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ABSTRPLCT 

Three insulation systems were evaluated in an extensive experi- 
mental program: multilayers of silica fabric/molybdenum foil, 
carbon fabric/tantalum foil and fine tungsten powder dispersed 
in a matrix of hollow zirconia microspheres. 

At temperatures below 2000 F, molybdenum/silica is clearly the 
superior insulation, Above 2000 F, tantalum/carbon is clearly 

superior 
of magnitude higher conductivity than the other material sys- 

tems at the low temperatures, but is only 30 percent higher at 

the higher temperature Means of maintaining tungsten/zirconia 

homogeneity under vibration have to be provided, 

The tungsten/zirconia insulation system has an order 

Measurements of effective thermal conductivity and thermal 
stability tests were conducted at temperatures up to and 

exceeding 3500 F. Compatibility studies were conducted with 

B-66 (a columbium alloy), Ta-lOW, Mo-1/2 Ti, and Haynes 25 vs 
molybdenum and tantalum foils, and with Haynes 25 vs silica 

fabric, While no compatibility problems were encountered at 

2000 F, diffusion barriers may be required to keep the mate- 
rials from welding at temperatures exceeding 2000 F. 

The details of all phases of work are fully discussed in a 
four-section report: (1) Selection of Materials, ( 2 )  Thermal 

Properties , (3) Thermal Stability and Compatibility, and (4) 
Applications Analysis, The latter includes four design exam- 
ples of insulation systems for "buried" rocket chambers having 

arbitrary duty cycles, geometrical features, propellants and 

thrust. Insulation temperature profiles for each case are 

g-raphica lly presented. 
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INTRODUCTION 

Extended space missions have led to the need for high-performance attitude 

control and orbital maneuver rocket engines capable of extended-operating 

durations with completely arbitrary duty cycles. 
gines may be installed within the structure of the spacecraft to minimize 
the thermal management problem which might be encountered because of vari- 
ations in spacecraft orientation. The so-called "buried" installation 

imposes a requirement of low skin temperature (approximately 400 to 600 F) 

upon the external surface of the rocket engine, both during firing and 

thermal soakback, to preclude excessive heating of surrounding supporting 

structure. 

In some cases, the en- 

A program entitled Spacecraft Rocket Engine Chamber Insulation Materials 

was initiated by the Rocketdyne Research Division on 1 June 1966. 
objective of this program was to generate information concerning the 

thermal properties, thermal stability, chemical compatibility, and con- 
tact resistance of high-temperature insulation materials. Major emphasis 

was placed on experimental studies. However, a limited analytical study 

was required to discern which modes of heat transfer would be encountered 

in testing. Thus, design of experiments was accomplished. 

The 

Four insulation systems were selected from a large number of candidate 

systems by a screening procedure which evaluated thermal stability and 

chemical compatibility with rocket engine materials. The four insulation 

sys tems selected were molybdenum f oi l/silica (Ref ras i 1) paper mu1 ti layer, 

molybdenum f oi 1/z i rconia paper multilayer, tantalum f oi l/carbon cloth 

multilayer, and a 25-percent theoretical density foamed zirconia composite. 
Ilollow cylindrical and planer (flat) test sections were formed from these 

material systems and instrumented to determine their effective thermal 

conductivity as a function of temperature, gas pressure, and mechanical 

loading pressure. 

The effective thermal conductivity (k,) results showed that radiation 

heat transfer is the dominating mechanism at higher temperatures, The 

R-7548 1 



in-vacuum k 
ordinary "good" (foamed ceramic brick) insulators at equivalent tempera- 

tures. 

insulators in insulative value. 

values for the multilayer materials were a factor of 10 below e 

However, the fomed zirconia composite only equalled average good 

Two problem areas were encountered in the first year's program: 

outgassing of binder materials in the silica and zirconia papers and carbon 
cloth, and thermal degradation of the paper materials. Thermal cycliiig of 

the insulation prior to its being sealed within an engine package would be 

necessary to preclude pressurization, l o s s  of insulative effectiveness, 

and a possible burst hazard. The thermal weakening of spacer materials 
would require further study to ensure applicability in strong vibration 

environments. 

severe 

A follow-on effort was initiated on 1 July 1967 to continue generation of 
engineering information on the cited properties of insulations. Two a n -  
iliary goals were the selection of several of the insulation systems as 
prime candidates f o r  possible future spacecraft engines, and the establish- 
ment of engineering design criteria governing their use in such applications. 

To these ends, additional data on some of the more promising materials 
already studied were collected. A new material was examined, and those 

problem areas which developed during -the first year were examined more 

closely. Whereas effort during the first year was limited primarily to a 
single cylindrical geometry, testing of other cylindrical configurations 

was accomplished. 
tigated; in addition, the length of the cylindrical test sections was 

varied to determine end heat-loss effects more accurately, The foil-to- 
spacer thickness ratio was a l s o  varied to determine the associated effect 

upon the effective thermal properties. 

A wider variation of test section thickness was inves- 

Three materials systems were tested in the follow-on program: 
denum foil/silica (Refrasil) cloth multilayer, (2) tantalum foil/carbon 

cloth multilayer, and (3) tungsten powder/zirconia microsphere powder 
mixtures. Though the two multilayer material systems had been tested 

(1) molyb- 

2 R-7548 



in the previous effort, additional effort was required to reduce outgassing, 

and to obtain sufficient, accurate data. 

Refrasil cloth was substituted for Refrasil paper to alleviate the out- 
gassing problem associated with binder decomposition, and to provide a 

separater having higher pre- and post-use strength,, The tantalum/carbon 

multilayer system had shown such promise as high temperature insulation 

that it was advisable to obtain more precise data for this material system, 
The tungsten/zirconia materials system was chosen for evaluation of the 

opacified powder-insulation concept which promised isotropic, spatially- 
distributed properties. 

The following sections of this report will summarize the effort and results 

o f  the follow-on program, provide a description of apparatus and test pro- 
cedures, present data and error analysis, and present and discuss the 
experiment results of the testing program. 

The report is subdivided into f o u r  m a j o r  parts corresponding to the program 

tasks : Materials Selection, Thermal Properties , Thermal Stability and Com- 

patibility, and Applications Analysis, The purpose of the Applications 
Analysis is to provide examples o f  designing insulation packages for buried 

rocket chambers having arbitrary duty cycles, geometrical features, propel- 

lants, and thrust. Criteria f o r  evaluation of insulation effectiveness are 

suggest e d . 

314 

, 



SUMMARY AND CONCLUSIONS 

i 

\ 
J 

An experimental program was conducted to evaluate the thermal properties, 
stability, and compatibility of three insulation systems as a function of 

temperature, time, gas pressure, mechanical loading pressure and geometrical 

features ,, 
silica (Refrasil) cloth multilayer; tantalum foil/carbon cloth multilayer; 

and tungsten powder/zirconia microspheres powder. 
ambient to 2200 F were obtained in testing the molybdenum/silica system; 

temperatures from ambient to approximately 3500 F were obtained with the 
two other insulation systems. Both transient and steady-state data were 
obtained utilizing electrically-heated hollow-cylindrical and planar test 

sections under moderate vacuum ( lo4  torr) conditions. 

The three insulation test materials were : molybdenum foil/ 

Tenperatures from 

The effective thermal conductivity results strongly depend upon temperature; 

a lower order dependence is evident at low temperature, but it approaches 

a cubic relationship with temperature at higher temperatures, as predicted 
by a theoretical radiation heat transfer model. The absolute value of the 
effective thermal conductivity for the two multilayer insulation systems 
is an orde r  o f  magnitude below common (porous brick ceramics) high- 

temperature insulation materials at equivalent temperatures; the powder- 

type insulation is only somewhat better than ordinary insulation. 

The lower conductivity of the molybdenum/silica system at lower temperatures 
favors its use below 2000 F. The time dependence of the effective thermal 
conductivities is presumed to be associated with the outgassing exhibited 

by each materials system, 
sequently smaller transient effects upon heating. 

Bakeout of gasifying materials resulted in sub- 

Intentional pressurization of test materials with argon gas resulted in 
regular increases in effective thermal conductivity with increasing gas 
pressure in the range (from 1 to 1600 microns) investigated. Transient 

effective thermal conductivity values always closely approached the 

independently determined steady-state values for the given materials 

system, 
conductivity was noted in any of the data, 

No anomalous effect of geometry upon the effective thermal 
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Inc reased  mechanical loading of t h e  two m u l t i l a y e r  systems r e s u l t e d  i n  

inc reased  e f f e c t i v e  thermal conduc t iv i ty .  However,  t h e  i n c r e a s e  varied 

with temperature i n  a d i f f e r e n t  manner f o r  t h e  t w o  insulat ions, ,  Both 

m u l t i l a y e r s  a r e  considered t o  be s t r u c t u r a l l y  adequate wh i l e  s eg rega t ion  

of t h e  tungs t en  powder w i t h i n  t h e  z i r c o n i a  matrix i n  a v i b r a t i o n  environ- 

ment would pose a problem u n l e s s  p reven ta t ive  measures are taken. A partial 

s i n t e r i n g  o f  t h e  bed by exposure t o  approximately 3500 F temperatures  could 

a l l e v i a t e  t h e  seg rega t ion  problem. However, i nc reased  v a l u e s  of e f f e c t i v e  

thermal  c o n d u c t i v i t y  a t  l o w  temperatures  would ensue. 

The r e s u l t s  of thermal s t a b i l i t y  s t u d i e s  i n d i c a t e  t h a t  s i l i c a  f a b r i c  i s  

p r e f e r a b l e  t o  s i l i c a  paper i n  a m u l t i l a y e r  i n s u l a t i o n  system f o r  u s e  t o  

2000 F. The f a b r i c  i s  s t r o n g e r ,  does n o t  t e a r  du r ing  use  and does n o t  

c o n t a i n  a b inde r  m a t e r i a l  t h a t  decomposes i n  t h e  h o t  r eg ion  and then  

condenses as a viscous l i q u i d  i n  coo le r  r eg ions .  

Carbon f a b r i c  d i d  n o t  undergo changes when annealed a t  temperatures  exceed- 

i n g  3500 F. 
i n  c o n t a c t  with t h e  carbon f a b r i c ,  b u t  t h e  carbon f a b r i c  supported and 

cushioned t h e  e m b r i t t l e d  tantalum ca rb ide  r a d i a t i o n  s h i e l d s ,  

Tantalum f o i l s  i n  a m u l t i l a y e r  system c a r b u r i z e  when annealed ,I 

Compa t ib i l i t y  between i n s u l a t i o n  and t h r u s t  chamber m a t e r i a l s  a t  2000 F 

d i d  n o t  c o n s t i t u t e  a problem. Above 2000 F, d i f f u s i o n  b a r r i e r s  may be 

needed t o  keep t h e  m a t e r i a l s  from welding. Molybdenum ve r sus  tungsten was 

t h e  only combination of m a t e r i a l s  t h a t  d i d  n o t  weld t o g e t h e r  a t  3500 F. 

S t a b l e  i n s u l a t i o n  systems of r e f r a c t o r y  oxides con ta in ing  a w e l l  d i spe r sed  

phase with h igh  r e f l e c t a n c e  a r e  y e t  t o  be developed and t e s t e d ,  Promising 

systems a r e  z i r c o n i a  microspheres o r  fu sed  t h o r i a  powder coated with a 

tungs t en  o r  i r i d i u m  f i l m  and g r a p h i t e  p a r t i c l e s  coated with a f i l m  of 

i r i d ium,  Perhaps, h a l f  of t h e  ceramic p a r t i c l e s  should be coated s o  t h a t  

t h e  metal f i l m  w i l l  n o t  form a continuous phase. This  f i l m  can be deposi- 

t e d  by vapor depos i t i on  o r  by decomposition from an organic  so lven t .  
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Applications Analysis has been conducted with the help of  an electric 

analog using the thermal property data generated in the program. The 
propulsion systems considered included: NTO/MMH-beryllium chamber with 
molybdenum/silica multilayer insulation, NTO/MMH-columbium chamber with 

tanta lum/carbon insula t i on, monoprope 1 lant hydraz ine-Haynes-25 a1 loy 
chamber with molybdenum/s i lica insulation and OF2/B2H6-pyrolytic graphite 

chamber with tantalum/carbon insulation Insulation temperature profiles 

are given for each case at various times, 
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MATERIALS SELECTION 

SILICA FABRIC/MOLYBDENUM FOIL SYSTEM 

I n  previous e f f o r t s ,  s i l i c a  paper w a s  used i n  combination with molybdenum 

f o i l ,  

l i m i t s  a t  and below 2000 F f o r  5 hours ,  

with t h e  h igh ly  r e f l e c t i v e  molybdenum s u b s t r a t e ,  and d i d  n o t  s h r i n k  enough 

t o  a p p r e c i a b l y  change t h e  thermal  conductance p r o p e r t i e s  of  t h e  m u l t i l a y e r  

system, 

The paper w a s  dimensional ly  and chemically s t a b l e t o  accep tab le  

I t  d i d  n o t  r e a c t  s i g n i f i c a n t l y  

The s i l i c a  paper had some shortcomings t h a t  d id  n o t  l i m i t  i t s  use fu lness  

a s  an i n s u l a t o r .  Being v e r y  weak, c y l i n d r i c a l  m u l t i l a y e r  i n s u l a t i o n t i o n  

systems had t o  be r o l l e d  v e r y  c a r e f u l l y .  Although t h e  paper shrank on ly  

about 6 pe rcen t  p a r a l l e l  t o  t h e  plane o f  t h e  molybdenum metal f o i l s ,  t h e  

paper t o r e  a s  it shrank du r ing  anneal ing.  This d id  no t  a f f e c t  t h e  con- 

ductance a p p r e c i a b l y  because: 

denum was exposed, (2) t e a r s  i n  d i f f e r e n t  l a y e r s  d i d  not  n e c e s s a r i l y  

occur d i r e c t l y  over each o t h e r  s o  t h a t  r a d i a t i o n  s h o r t  c i r c u i t s  were no t  

formed, and (3)  t e a r  were narrow s o  t h a t  t h e  a d j a c e n t  l a y e r s  of molyb- 

denum f o i l s  d id  n o t  t ouch  each o t h e r  t o  f o r m  a metal-to-metal t he rma l  

s h o r t  c i r c u i t .  

(1) only a r e l a t i v e l y  smll a r e a  of molyb- 

It w a s  g e n e r a l l y  agreed t h a t  t e a r i n g  of t h e  i n s u l a t i n g  space r  l a y e r  i n  

t h e  m u l t i l a y e r  system should be e l imina ted  i f  poss ib l e .  Another s h o r t -  

coming of  t h e  paper w a s  ou tgass ing  of t h e  organic  b inde r  du r ing  t h e  ini- 

t i a l  h e a t i n g  period. The gaseous products  condensed i n  t h e  coo le r  l a y e r s  

as  a syrupy l i q u i d  which w a s  undes i r ab le  from a contamination p o i n t  of 

view. 

To  improve t h e  m u l t i l a y e r  system involved,  a high-puri ty  s i l i c a  f a b r i c  

( R e f r a s i l  F a b r i c  Type C-100-48, 13. I. Thompson Co.) w a s  s u b s t i t u t e d  f o r  

t h e  s i l i c a  paper. 

descr ibed i n  Appendix A. 

i m p u r i t i e s ;  d i d  n o t  c o n t a i n  a b i n d e r ;  was  s t r o n g ,  economical, and avail- 

a b l e  i n  a v a r i e t y  of weaves and th i cknesses  (Fig. 1 and 2 i n  Appendix A) .  

The f a b r i c  w a s  s e l e c t e d  on t h e  b a s i s  of s c reen ing  t e s t s  

It contained l e s s  t h a n  1 pe rcen t  by weight 
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ZIRCONIA MATRIX-DISIPERSED TUNGSTEN POWDER SYSTEM 

This new insulation material system was selected on the basis of screening 
tests conducted during the early part of the program (Appendix B).  

system consisted of dispersed tungsten powder suspended in a matrix of 

zirconia insulation material*. 

weight tungsten powder were prepared and tested in molybdenum cans, 

The 

Specimens containing 2 and 10 percent by 

A combination of a zirconia matrix and tungsten powder was selected because: 
(1) it is representative of the basic concept of a highly reflective dis- 

persed phase in a low-density insulative matrix, (2) the materials are 
stable at 3500 F, (3)  the raw materials are readily available and reasonably 
inexpensive, and (4) the system can be easily prepared without a developmental 
effort. 
than all other candidate systems. 

outgas o r  react with the molybdenum can, 

Screening tests at 3500 F showed this materials system to be better 
It shrank 5 percent o r  less and did not 

Requirements of the new materials system also included those of existing 

systems, viz,: a low effective thermal conductivity and thermal diffus- 
ivity, chemical and physical stability for at least 1 hour at 3500 F at 

-4 a pressure of 10 
development and fabrication were beyond the scope of this effort), low 

cost, and lightweight. 

relative to present systems so as to afford wider flexibility in design 

and fabrication. 

torr o r  less, availability in the desired form (material 

It was desirable that it constituted an improvement 

Reflective surfaces within a matrix are required to reduce conduction due 
to radiation because the radiation heat transfer mode is dominant at the 
higher temperatures, particularly above 2000 F. Several basic methods can 

be used to introduce reflective surfaces, For example, a reflective 

‘ATungsten powder: -200 mesh particle size, Grade G, 99.9-percent 
purity, Firth Sterling, Inc. 
-36, +lo0 mesh size hollow microspheres, 
Norton Type I 

Zirconia powder: 

i 
J 
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compound can  be vapor-deposited on t h e  s u r f a c e  of t h e  ceramic p a r t i c l e s .  

It can be p a i n t e d  on o r  d i spe r sed  w i t h i n  t h e  ma t r ix  i n  powder form, 81- 

though t h e  lat ter method would n o t  y i e l d  t h e  b e s t  i n s u l a t i v e  system f o r  

r o c k e t  a p p l i c a t i o n s ,  it w a s  none the le s s  s a t i s f a c t o r y  f o r  producing pro- 

t o t y p e  t e s t  specimens at minimum cost .  Thus, t h e  new insulat ion system 

cons i s t ed  of a matrix of l o o s e l y  packed, hollow z i r c o n i a  microspheres 

con ta in ing  a small amount of a d i spe r sed  t u n g s t e n  powder. 

Two l a r g e  batches of material were prepared s o  t h a t  t h e  thermal  p r o p e r t i e s  

of t h i s  materials system could be measured. A s u f f i c i e n t  amount of mate- 

r ia l  f o r  each ba tch ,  more than 1500 grams, w a s  prepared t o  f i l l  a thermal 

c o n d u c t i v i t y  t e s t  c o n t a i n e r  16 inches long by 6 inches OD and 4 inches I D .  

The z i r c o n i a  and tungs t en  powders were mixed f o r  1/2 hour i n  a twin-shell-  

type b l e n d e r ,  One ba tch  c o n s i s t e d  of 90 pe rcen t  by weight Z r O  microspheres 

plus  10-percent t ungs t en  powder while  t h e  o t h e r  w a s  98 and 2 pe rcen t ,  r e -  

s p e c t i v e l y ,  The Zr02 w a s  -36, +lo0 mesh hollow microspheres ( Z i r n o r i t e  I ,  

Norton C o . ) .  Although t h e  Zr02 m a t e r i a l  was purchased as -36, +lo0 mesh 

m a t e r i a l  it contained 19 pe rcen t  by weight -100 mesh f i n e s .  

which were probably fragments of hollow spheres  t h a t  were broken during 

handl ing and shipping,  were removed be fo re  t h e  tungs t en  powder w a s  added. 

Tungsten powder, -200 mesh, w a s  used i n  t h e  as-received cond i t ion ,  

2 

These f i n e s ,  

One problem with us ing  t h i s  m a t e r i a l  is seg rega t ion  of t h e  f i n e ,  heavy 

tungs t en  powder. A uniform d i s p e r s i o n  w a s  somewhat more d i f f i c u l t  t o  

o b t a i n  when u s i n g  a newer batch of r a w  m a t e r i a l s .  

due t o  t h e  d r i e r  atmosphere a t  t h e  time of mixing t h e  l a r g e  ba t ch  of t h i s  

m a t e r i a l .  A more humid atmosphere would cause t h e  f i n e  tungs t en  powder 

t o  c l i n g  t o  t h e  l a r g e r  g r a i n s  of Z r O  Thus, t o  overcome t h i s  problem, 2 '  
t h e  Z r O  r a w  m a t e r i a l  w a s  s t o r e d  be fo re  use i n  an  enclosed glove box which 

contained humid a i r .  The amount of absorbed water  i s  e s t ima ted  t o  be l e s s  

t han  1 pe rcen t  by weight. 

This  might have been 

2 

The tungs t en  powder was n o t  s t o r e d  i n  a humid atmosphere t o  avoid d i f f i -  

c u l t i e s  i n  d i s p e r s i o n  w i t h i n  t h e  Z r O  matr ix .  The tungs t en  powder, being 2 
much f i n e r ,  would t e n d  t o  agglomerate.  Such a cond i t ion  would reduce its 

e f f e c t i v e n e s s  i n  d i s p e r s i n g  r a d i a t i o n .  

R-7548 11 



Bulk d e n s i t y  of t h e  Z r O  

weight mixture  were determined. 

t h e  powder and weighed. 

minutes of cons t an t  low-amplitude v i b r a t i o n .  These bulk  d e n s i t y  data a r e  

l i s t e d  below; bulk d e n s i t y  is r e p o r t e d  i n  gm/cc. 

t ungs t en ,  and 90-percent Zr02 + 10 percent  by 2’ 
A 10-cc graduated c y l i n d e r  was f i l l e d  wi th  

Volume of t h e  powder was a l s o  measured a f t e r  10 

Tungs t e n  Powder 

A s  -Pour e d Vib ra t ed  

4.9 5.2 

Zr02 Microspheres 2,6 2.6 

90 Percen t  by Weight Z r O  and 2.7 
10 Pe rcen t  by Weight 2 2 - 8  

Seve ra l  o t h e r  combinations of m a t e r i a l s  a r e  p o t e n t i a l l y  u s e f u l  f o r  eventua l  

u se ,  i n  one form o r  a n o t h e r ,  i n  rocke t  engine a p p l i c a t i o n s .  The ceramic 

ma t r ix  can be z i r c o n i a ,  t h o r i a ,  carbon, or g r a p h i t e ,  whereas t h e  r e f l e c t i v e  

powder can be tungs t en ,  tantalum, columbium, molybdenum, rhenium, i r i d ium,  

o r  ruthenium, Use of prec ious  meta ls  should n o t  be excluded,  because 

1 t h e s e  meta ls  can be pa in t ed  o r  depos i t ed  as v e r y  t h i n  l a y e r s  s o  t h a t  only 
J 

a r e l a t i v e l y  small a m o u n t  of m a t e r i a l  would a c t u a l l y  be r e q u i r e d ,  

thermal  i n s u l a t i o n  concept shows m e r i t ,  improvement of t h e  m a t e r i a l s  sys- 

tems appears  poss ib l e  i n  s e v e r a l  r e s p e c t s .  

more s t a b l e  by us ing  h ighe r  p u r i t y  r a w  m a t e r i a l s  i n  t h e  form of coa r se ,  

fu sed  g r a i n s  t h a t  would n o t  s i n t e r  (and hence s h r i n k ) ,  or it can be made 

l i g h t e r  i n  weight by us ing  hollow microspheres .  

would a l s o  be l o w e r  i f  t h e  r e f l e c t i v e  s u r f a c e s  were i n  t h e  form of t h i n  

coa t ings  r a t h e r  than  p a r t i c l e s .  

I f  t h i s  

Matr ix  m a t e r i a l s  can be made 

Bulk d e n s i t y  of t h e  system 
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T-L PROPERTIES 

This section presents a detailed discussion of the experimental work con- 
ducted to determine the local effective thermal conductivity of the candi- 
date insulation materials over a range of temperatures under steady-state 
and transient conditions. 
and planar insulation configurations under high-vacuum conditions, 

The tests were conducted with hollow cylindrical 

APPBTUS 

The apparatus used to measure effective thermal conductivities consisted 
of a vacuum system, awiliary equipment, instrumentation and the test 

sections which were placed within the vacuum chamber. 

the apparatus, the characteristic problems with the insulation systems 
under consideration are described. 

Before describing 

Extreme cleanliness is usually axiomatic in high-vacuum work, Care should 
be taken to remove all unnecessary gas sources to allow maintenance of 

high vacuum while using reasonable sized pumps, 

a large amount (on the order of 5 to 10 pounds) of material which is a 
natural source of gas, is placed within the vacuum system as the material 
under test. 

range) in a reasonably sized chamber while heating these gas-containing 

materials to temperatures as high as 3750 F within time periods less than 
an hour. Vacuum in the lo4  torr range was sufficient to preclude sig- 
nificant gas conduction contribution to the effective thermal conductivities 
of  superinsulation materials. This vacuum range was consistently achieved 

in the first and second year effort. Because of the successful operation 
experienced during the first year, little change in the vacuum system was 

necessary. 

below. 

In the present application, 

4 It has been possible to achieve sufficient vacuums (10 torr 

Some auxiliary equipment was replaced and augmented as described 

Because the vacuum system had been in continual operation during the latter 

portion of the first years testing program, no maintenance had been possible. 
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Therefore, a first effort of the second-year program was to disassemble, 

inspect, clean and reassemble all vacuum system components, During this 

overhaul, a brown sticky varnish coating was observed on all interior 

surfaces, 
products of the materials of the first testing program. The varnish re- 

This varnish apparently resulted from the binder decomposition 

sponded well to rubbing with trichlorethylene and acetone washes. Steel 
wool was required to remove baked on deposits on the diffusion pump chimney 

structure. Deposits nowhere were sufficient to cause blockage. However, 

these deposits had probably limited vacuum performance. 

Upon reassembly, the vacuum system was checked out to an ultimate vacuum 
of 10 torr after only a few hours of pumping. The inspection of com- 
ponents during overhaul and the improved vacuum after reassembly afforded 
confidence that the present testing program could be a,ccomplished with 

little trouble. 

-6 

Vacuum System 

The vacuum system consisted of various commercially-available vacuum 

devices as shown schematically in Fig. 1. Two Model 1397 Welch roughing 
pumps were used in conjunction with a 6-inch-diameter, CVC, oil-type 

diffusion pump and an intervening liquid-nitrogen-cooled cold trap, 
Pyrex bell jar was 17 inches in diameter by 30 inches high. Nominal 2- 

inch plumbing provided a bypass line between the chamber and the roughing 

system, and connected the outlet of the diffusion pump to the roughing 

system. 
solenoid-controlled and pneumatically actuated. The bypass line was closed 

with a hand valve, Two cold traps, both water-cooled in the present appli- 
cation, were interposed between the diffusion pump and the high-vacuum 

valve, The vacuum chamber had a well-type base plate in which 12 shear-seal 
ports of 3/4-inch diameter were incorporated to accommodate the various 

vacuum lead-throughs e 

The 

The 2-inch foreline valve and the 6-inch high vacuum valve were 
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VACUUM CHAMBER 
( 1 7 - I NC H D I AMETE R ; 
30 INCHES H I G H )  

VEECO n4 L 
HAND BYPASS 

THERMOCOUPLE 

Figure  1. Schematic of Vacuum System Used f o r  Testing 



A CVC (model GTC-004) thermocouple gauge w a s  l oca t ed  a t  t h e  i n l e t  t o  t h e  

l iquid-nitrogen-cooled c o l d  t r a p .  An NRC thermocouple gauge (model 501) 

w a s  l o c a t e d  i n  one of t h e  a c c e s s  p o r t s  i n  t h e  base p l a t e  of t h e  vacuum 

chamber. 

p o r t  of t h e  base p l a t e .  V a r i a b l e  e l e c t r i c a l  h e a t i n g  power t o  t h e  d i f f u s i o n  

pump w a s  supp l i ed  by a 20-amp Variac t r ans fo rmer .  

temperature l imi te r  w a s  used t o  s h u t  o f f  t h e  d i f f u s i o n  pump e l e c t r i c a l  

A Veeco ion  gauge (model RG-75K) w a s  l o c a t e d  i n  ano the r  a c c e s s  

A Honeywell Pyr-0-Vane 

power i n  t h e  event  of overtemperature.  

t r o l l e r  au to ina t i ca l ly  c losed  t h e  high vacuum va lve  i n  t h e  event  of over- 

p r e s s u r i z a t i o n  i n  t h e  f o r e l i n e ,  

f o r  t h e  d i f f u s i o n  pump and f i r s t  co ld  t r a p ,  t h e  l i q u i d  n i t r o g e n  c o l d  t r a p ,  

and t h e  quench c o i l  on t h e  d i f f u s i o n  pump,, The complete vacuum system 

t e s t  s e t u p  is shown p i c t o r i a l l y  i n  F i g .  2. 

The C'VC thermocouple gauge con- 

Separate  water  c i r c u i t s  were provided 

A u x i l i a r y  Equipment 

Add i t iona l  equipment which was necessa ry  f o r  o p e r a t i o n  of t h e  vacuum sys- 

tem i s  descr ibed below. 

Water Supply. 

t o  supply s o f t ,  f i l t e r e d  water t o  t h e  vacuum system and t e s t  appa ra tus ,  

Commercially-softened water  w a s  f i l t e r e d  i n  a 4 0 ~  f i l t e r  c a r t r i d g e .  

of t h e s e  water c i r c u i t s  were u t i l i z e d  i n  t h e  vacuum system as desc r ibed  

above, E s s e n t i a l l y ,  on-off c o n t r o l  w a s  provided by 1/4-inch Grove hand 

v a l v e s ,  The t h r e e  o t h e r  water c i r c u i t s  supp l i ed  t h e  t e s t  s e c t i o n .  The 

copper power l eads  t o  t h e  t e s t  s e c t i o n  h e a t e r  were water-cooled i n  a s e r i e s  

arrangement of e l e c t r i c a l l y - i n s u l a t e d ,  concen t r i c ,  t q b u l a r  bus b a r s .  

Heated water w a s  supp l i ed  t o  t h e  guards of t h e  ca lo r ime te r ,  The c a l o r i -  

meter was supp l i ed  w i t h  a cons t an t  f l o w r a t e  of coo lan t  water  i n  a s e p a r a t e  

c i r c u i t ;  t h e  c o n s t a n t  f l o w r a t e  w a s  obtained by supplying an  excess flow- 

r a t e  of water t o  a constant-head t ank ,  a l lowing t h e  excess t o  overflow 

through a s p i l l  l i n e ,  and u t i l i z i n g  a g r a v i t y  head and a f i n e l y - t a p e r e d ,  

hand needle  va lve  f o r  e s t a b l i s h i n g  t h e  ca lo r ime te r  flow. 

S i x  water supply c i r c u i t s  were inco rpora t ed  i n t o  a manifold 

Three 
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Guard Water Heater .  

of any p a r t i c u l a r  t e s t  s e c t i o n  w a s  hea t ed  s o  t h a t  an  a r b i t r a r i l y  small 

temperature d i f f e r e n c e  could be maintained between t h e s e  guards and t h e  

ca lo r ime te r .  I n  t h i s  way, superf luous h e a t  l eaks  between guard s u r f a c e s  

and c a l o r i m e t e r  were minimized. A 1500-watt "Cal-Rod" e l e c t r i c  r e s i s t a n c e  

h e a t e r  was so f t - so lde red  t o  a 3-foot l e n g t h  of 1/4-inch copper t u b i n g  

t o  form t h e  guard water h e a t e r .  The water  through t h e  guard system w a s  

supp l i ed  a t  a r e l a t i v e l y  high f lowra te  compared t o  t h e  c a l o r i m e t e r  flow 

s o  t h a t  h e a t  ga ins  from t h e  t e s t  s e c t i o n  r e s u l t e d  i n  on ly  a s m a l l  tempera- 

t u r e  r ise  w i t h i n  t h e  guards,  

The water  which w a s  supp l i ed  t o  t h e  v a r i o u s  guards 

Test-Section E l e c t r i c a l  Power Supply. 

whether carbon rod o r  m e t a l  f o i l ,  r e q u i r e d  a high-current ,  low-voltage 

power source.  

gram. 

s e c t i o n s  numbered 1 through 5, c o n s i s t e d  of an  8-gauge, copper-wire secon- 

dary winding on a 220-volt t o r o i d a l  t ransformer c o i l .  I t  had 1 - 2 - h  power 

capac i ty ,  

The t e s t  s e c t i o n  e l e c t r i c a l  h e a t e r s ,  

Two such power s u p p l i e s  were u t i l i z e d  i n  t h e  p r e s e n t  pro- 

The f i r s t  power supply,  which w a s  used with molybdenum/silica t es t  

Th i s  t r ans fo rmer  was fo rced -a i r  cooled,  

An ammeter and p o r t a b l e  vo l tme te r  i n  t h e  secondary c i r c u i t  were used t o  

i n d i c a t e  h e a t i n g  power i n p u t .  Voltage t a p s  were l o c a t e d  on t h e  carbon 

adap te r  p i eces  i n t o  which t h e  h e a t e r  rod w a s  f a s t e n e d ,  A second power 

supply of 12-kw c a p a c i t y  w a s  cons t ruc t ed  and u t i l i z e d  f o r  t h e  las t  h e a t i n g  

cyc le  of molybdenum/silica t e s t  s e c t i o n  No. 5 and a l l  t e s t s  t h e r e a f t e r .  

I t  c o n s i s t e d  of a single-phase 12-lwa (40 volt/700 ampere ou tpu t ,  50 
ampere/240 v o l t  i n p u t )  secondary t ransformer coupled t o  a 50 ampere/240 

v o l t  v a r i a b l e  t ransformer (Superior  E l e c t r i c )  

s e c t i o n  w e r e  u t i l i z e d  as p rev ious ly  s t a t e d ;  c u r r e n t  w a s  measured on t h e  

inpu t  t o  t h e  secondary t ransformer.  Knowing t h e  t u r n s  r a t i o  of t h e  secondary 

t ransformer permit ted c a l c u l a t i o n  of t h e  t e s t  s e c t i o n  h e a t i n g  power, Volt-  

age and c u r r e n t  measurements were u t i l i z e d  t o  e s t a b l i s h  and  monitor h e a t i n g  

power l e v e l s ,  and check on t h e  h e a t  balance,  

used f o r  e v a l u a t i o n  of t h e  system performance du r ing  t e s t ,  

Voltage t a p s  on t h e  t e s t  

The h e a t  balance check w a s  
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The e l e c t r i c a l  power l eads  t o  t h e  t e s t  s e c t i o n  h e a t e r  c o n s i s t e d  of water- 

cooled copper tub ing .  

t h e  i n n e r  1/8-inch OD, were connected i n  a Tee a t  one end, w i th  t h e  

l a r g e r  t ube  blocked a t  t h e  t e s t  s e c t i o n  end. 

t h e  1/8-inch tube  and out through t h e  annulus between t h e  t u b e s ,  

power l e a d s  were connected i n  s e r i e s  f o r  t h e  water flow. 

i s o l a t e d  each e l e c t r i c a l  l e a d ,  t h e  water i n l e t ,  and o u t l e t ,  

Two concen t r i c  t ubes ,  t h e  o u t e r  1/4-inch OD and 

The water  flowed i n  through 

The two 

Micarta i n s u l a t o r s  

Cylindrical-Test-Section Winding Machine, The winding machine, which w a s  

used i n  c o n s t r u c t i n g  a l l  of t h e  c y l i n d r i c a l  t e s t  s e c t i o n s ,  i s  shown i n  

Fig.  3 .  Three c l o t h  supp ly  r o l l s ,  a f o i l  supply r o l l  and t h e  takeup 

r o l l  a r e  p i c t u r e d .  

w i t h i n  t h e  t e s t  s e c t i o n  as t h e  inne r  s t i f f e n i n g  c y l i n d e r .  Two modifica- 

t i o n s  were made t o  t h e  winding machine subsequent t o  t h i s  p i c t u r e  (Fig,  

3 ) .  
r o l l  t o  e l i m i n a t e  a t r a n s v e r s e  wiping a c t i o n  upon t h e  edge of t h e  f o i l  

t h a t  i n t e r f e r e d  w i t h  a c c u r a t e  winding. The second mod i f i ca t ion  w a s  

t h e  a d d i t i o n  of another  f o i l  supply r o l l  s i t u a t e d  above the one 

p i c t u r e d  . 

The dark c e n t e r  p o r t i o n  of t h e  takeup r o l l  remains 

The end f l a n g e s  on t h e  f o i l  supply were machined f l u s h  wi th  t h e  

Sixteen-inch-wide f o i l  is n o t  a v a i l a b l e  commercially. Therefore ,  t w o  

p a r a l l e l  s t r i p s  of f o i l  (one 6 inches wide, one 10 inches wide) were 

wound t o g e t h e r  t o  make 16-inch-long c y l i n d e r s .  

In s t rumen ta t ion  

Thermocouples, Two types  of thermocouple wi re  were u t i l i z e d  i n  t h e  t e s t i n g  

program; chromel-alumel , and tungsten-5 pe rcen t  rhenium/tungsten-26 pe rcen t  

rhenium. Chromel-alumel thermocouples were used i n  t h e  temperature range 

from ambient t o  2200 F. 

t o  temperatures  of 3750 F. 

w a s  encased i n  a 321 s t a i n l e s s - s t e e l  shea th  of 0.040 inch OD and w a s  in-  

s u l a t e d  wi th  magnesia. 

encased i n  0.040-inch-OD tantalum shea th  w i t h  magnesia i n s u l a  t i o n .  Thermo- 

couple j u n c t i o n s  were fus?ion-welded b a r e  wire n o t  grounded t o  t h e  sheath.  

The tungsten-rhenium thermocouples were used up 

The 0.005-inch-diameter chromel-alumel wire  

The 0,005-inch-diameter tungsten-rhenium wire w a s  
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Thermocouple leads were soft soldered to gold-plated brass pins, 1/16 inch 

diameter by 1/2 inch long, which were mounted in micarta blocks with epoxy 
cement, The male and female pins mated with similar pins which terminated 

a permanent thermocouple harness. The micarta blocks provided an adequate 

thermal shunt between each of  a pair of leads to minimize formation of 

extraneous electrical potential. These pinned junctions were located in 

ambient temperature regions, out of sight of high-temperature radiation, 

sources 

Thermopiles, 

inch-diameter, chromel-alumel, duplex fiberglass-insulated premium-grade 
thermocouple wire. Thus, an order of magnitude increase in sensitivity 

was gained in measuring differential water temperatures. 

junctions were electrically isolated from, yet thermally mated to water 

inlet and outlet tubing using epoxy cement. 

the junctions f o r  approximately 3/8 inch to minimize error from heat con- 

duction dom the wire, 

and one each with the guard water supply and electrical power leads. Two 
thermopiles had chromel leads and two had alumel leads. 

thermocouple lead-outs in the thermocouple harness were rewired for the 

thermopile signals. 

Ten-element thermopiles were fabricated by connecting 0,010- 

Thermopile 

The epoxy was built up behind 

Two thermopiles were utilized with the calorimeter, 

Four regular 

Thermocouple Harness. Thermocouples and thermopile leads from each test 

section mated with a permanent thermocouple harness, 

alumel and 12 tungsten-5 percent rhenium/tungsten-26 percent rhenium thermo- 

couples were accommodated. 

of duplex fiberglass-insulated premium-grade thermocouple wire, 

lead wire was used to match the tungsten-? percent rhenium tungsten-26 

percent rhenium electromotive force characteristics at low temperatures 

(less than 300 F) ;  this wire was insulated with fiberglass spaghetti-type 

insula ti on 

Twenty eight chromel- 

The chromel-alumel part of  the harness was made 
Hoskins 

The harness wire was led out of  the bell jar through a drilled plexiglass 

plate. Epoxy cement sealed the leadthrough holes in the Plexiglas. The 
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lead wire was continuous from the thermocouple connection into an ice 

bath. The double, cold-junction termination of the thermocouple lead 

wire within the ice bath allowed all-copper leads from the ice bath to 

the recorder. 

the thermocouple harness was thereby avoided. 

The possibility of spurious thermocouple junctions in 

Ice Bath. The thermocouple harness cold junctions were contained within 

a 2-inch-diameter by 16-inch-long, oil-filled test tube, This oil-filled 

test tube was centered within a 6-inch-ID stainless-steel dewar flask. 

A mixture of water and crushed ice (-1/4 inch pieces) filled in the annular 

space between the test tube and dewar. 

the dewar and held the tube in position. 
A micarta disk covered the top of 

Water Flowrate. The water flowrates through the calorimeter, the guard 

system, and the power leads were determined by collecting the efflux from 

each system in graduate cylinders over timed intervals. Four graduate 

cylinders of 50-, loo-, 5OO-, and 1000-milliliter capacities were available. 

Flows were collected for 60 seconds using a 12-inch-dial electric clock with 
sweep second hand as a timer. 

Millivolt Recorders. 

couple signals were recorded using digital data logger equipment built by 
Non-Linear Systems, Inc. The majority of the data were obtained with a 

40-channel data logger featuring an X-2 model voltmeter, a series 2300 

scanner, a model 2504 printer, and an expandable switching network,, This 

device operated at two samples per second and was accurate within kO.01 

millivolt in the 100 millivolt range. 

in the testing program so that it was necessary to build a backup recording 

system. A manually operated thermocouple switch was wired to mate with the 

thermocouple harness and an X-1 digital voltmeter, 

hand at an average rate of 1 sample per 5 seconds. The X-1 voltmeter can 

discern +1 microvolt in the 100-millivolt range, Approximately +3 microvolt 
noise was experienced in the thermocouple recording system. Though the 

sampling rate with the backup system was reduced by a factor of 10, accuracy 

of transient o r  steady-state temperature data were not compromised because 

of the long time intervals (40 minutes) allowed between sets of data. 

Both transient and steady-state millivolt thermo- 

The X-2 voltmeter malfunctioned midway 

Data were recorded by 
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Pressure  Transducers .  Pressure  wi th in  t h e  vacuum chamber was measured with 

e i t h e r  an  NRC type  501 thermocouple gauge, a Veeco i o n  gauge (model RG-75K) 
o r  an MKS Systems Bara t ron  gauge (model 77H-30) depending upon t h e  p re s su re  

level., The thermocouple gauge was used t o  i n d i c a t e  p re s su re  l e v e l  dur ing  

pumpdown a s  an i n d i c a t o r  f o r  determining when t h e  d i f f u s i o n  pump could be 

opera ted ,  The i o n  gauge w a s  used  t o  i n d i c a t e  t h e  working vacuum dur ing  

t e s t .  The Bara t ron  gauge measured p res su re  l e v e l s  during t h e  argon pres- 

s u r i z a t i o n  tests and had a s e n s i t i v i t y  of 1 micron i n  t h e  o p e r a t i o n a l  mode 

u t i l i z e d , ,  

Tes t  Sec t ions  

Tes t  s e c t i o n s  were designed t o  accommodate t h e  f u l l  temperature  range from 

ambient t o  maximum i n  a s i n g l e  h e a t i n g  cyc le .  

thermocouple c a p a b i l i t y  and r a t h e r  l a r g e  dimensions,  t o  accomplish t h e  

goal  of ob ta in ing  thermal  conduc t iv i ty  d a t a  a t  a number (-5 t o  10) of 

d i s c r e t e  tempera tures  throughout  t h e  tempera ture  range imposed. An o p t i -  

miza t ion  was r equ i r ed  i n  t e s t  s e c t i o n  design s o  t h a t  a s u f f i c i e n t  number 

of t empera tures ,  r e p r e s e n t a t i v e  of macroscopic p r o p e r t i e s ,  could be mea- 

sured ,  Mul t i l aye r  m a t e r i a l s  have h ighly-aniso t ropic ,  v a r i a b l e  p r o p e r t i e s  

on  t h e  microscale .  

This  r equ i r ed  mul t ip l e  

Thus, ca re  and judgement were r equ i r ed  i n  thermocouple 

placement t o  minimize measurement e r ro r .  

T e s t  s e c t i o n s  of c y l i n d r i c a l  and p lanar  geometry were employed i n  t h e  

thermal  p r o p e r t i e s  t e s t i n g  program, 

t e s t  s e c t i o n s  were cons t ruc t ed .  Of t h e  c y l i n d r i c a l  t e s t  s e c t i o n s ,  12 were 

m u l t i l a y e r  and 2 were powdered i n s u l a t i o n .  Both p lanar  t e s t  s e c t i o n s  were 

of  m u l t i l a y e r  c o n s t r u c t i o n ,  The m a t e r i a l ,  geometry and o t h e r  des ign  d e t a i l s  

of each t e s t  s e c t i o n  a r e  presented  i n  Table 1. 

Fourteen c y l i n d r i c a l  and t w o  p lanar  

C y l i n d r i c a l  Mul t i l aye r  Type. These t e s t  s e c t i o n s  were cons t ruc t ed  by con- 

t i n u o u s l y  winding a wrap of f o i l  and c l o t h  around a hollow, c y l i n d r i c a l  

carbon mandrel u n t i l  t h e  d e s i r e d  t o t a l  t h i ckness  o f  i n s u l a t i o n  w a s  obtained.  

A schematic drawing of a t y p i c a l  c y l i n d r i c a l  t e s t  s e c t i o n  i s  shown i n  c r o s s  

s e c t i o n  i n  F ig .  4 .  I n  t h i s  way, l a y e r s  of f o i l  and c l o t h  a l t e r n a t e d  i n  
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Altornate wraps 
o f  Foil 8nd 
Paper (or cloth) 

Figure 4. Schematic of Typical Cylindrical Test Section 
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t h e  r a d i a l  d i r e c t i o n  throughout t h e  t h i c k n e s s  of i n s u l a t i o n .  

small amount (-5 pounds) of t e n s i o n  was  a p p l i e d  t o  t h e  f o i l  du r ing  t h e  

wrapping process  t o  keep t h e  i n s u l a t i o n  bundle t i g h t l y  wrapped, 

mandrel diameters  of 3 and 4 inches were used. I n s u l a t i o n  t h i c k n e s s  of 1, 

1-1/2 o r  2 inches r e s u l t e d  i n  o v e r a l l  i n s u l a t i o n  o u t s i d e  diameters  of 6 
o r  7 inches.  

inches except  f o r  molybdenum/silica No, 8 ( l eng th  equa l s  10 inches) .  

A nominally 

Carbon 

The l e n g t h  of t h e  c y l i n d r i c a l  t e s t  s e c t i o n  w a s  nominally 16 

Metal sheathed thermocouples were pos i t i oned  a t  r e g u l a r  r a d i a l  i n t e r v a l s  

throughout t h e  i n s u l a t i o n  wi th  j u n c t i o n s  placed i n  t h e  c e n t e r  plane of t h e  

t e s t  s e c t i o n  and i n  a p a r a l l e l  plane a few inches  from t h e  end of t h e  t e s t  

s e c t i o n ,  

avo id  r a d i a l  bu lg ing  a t  any l o c a t i o n .  

technique,  both r a d i a l  temperature  g r a d i e n t s  and axial  temperature  g r a d i e n t s  

were measured s o  t h a t  h e a t  l o s s  c o r r e c t i o n s  could be made t o  t h e  c a l c u l a t e d  

v a l u e s  of t h e  e f f e c t i v e  thermal conduc t iv i ty .  

The thermocouple p o s i t i o n s  were indexed c i r c u m f e r e n t i a l l y  t o  

With t h i s  thermocouple placement 

Each end of a c y l i n d r i c a l  t e s t  s e c t i o n  w a s  i n s u l a t e d  wi th  a number of 

p l ana r  l a y e r s  of t h e  same type  of m a t e r i a l  as under t e s t .  

s t a c k s  of i n s u l a t i o n  c o n s i s t e d  of c i r c u l a r  d i s k s  of c l o t h  having t h e  same 

ou t s ide  diameter as t h e  t e s t  s e c t i o n ,  and a c e n t e r  h o l e  f o r  t h e  h e a t e r  

power pos t s  t o  come through. 

equa l  t o  t h e  carbon mandrel. 

These end 

The i n t e r v e n i n g  me ta l  f o i l  d i s k s  had an OD 

The t e s t  s e c t i o n  h e a t e r  was a l/4-inch-diameter carbon rod,  

rod threaded i n t o  a 1/2-inch-diameter carbon rod a t  each end of t h e  t e s t  

s e c t i o n ,  The l a r g e r  carbon p i eces  degrade t h e  h e a t e r  temperature  and 

permit connection t o  water-cooled copper power l e a d s .  

The h e a t e r  

The c y l i n d r i c a l  t e s t  s e c t i o n  and end s t a c k s  of i n s u l a t i o n  are encased 

w i t h i n  a water-cooled c a l o r i m e t e r  and end guards.  

7 inches diameter and 8 inches long) c o n s i s t e d  of a t h i n  (0.011 inch  t h i c k )  

copper s h e e t  r o l l e d  i n t o  a c y l i n d e r  w i th  a double h e l i c a l  wrap o f  3/16-inch 

OD s t a i n l e s s - s t e e l  t ub ing ,  s o f t  so lde red  t o  t h e  o u t s i d e  s u r f a c e  a t  approxi- 

mately l-inch axial  i n t e r v a l s .  

The c a l o r i m e t e r  (6 o r  

The double h e l i x  of t u b i n g  maintained t h e  
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whole calorimeter surface at a relatively constant temperature because 

the average coolant water temperature was the same at any location. 

cylindrical end guards (6 o r  7 inches diameter and 2 o r  5 inches long) 
also were made of 0,011-inch-thick copper with 3/16-inch OD stainless- 
steel tubing soft soldered to them, 

calorimeter and end guards installed is shown in Fig. 5. 

The 

A typical test section with the 

As pictured, the test section assembly is vertical, free standing upon 

an aluminum base plate which mounts within the vacuum chamber. 

An outer guard cylinder of 0.011-inch-thick copper sheet was positioned 
around the calorimeter and end guards. 

intervening annular space. 

with the same water as the end guards. 

calorimeter and end guards indicated the copper surface temperatures. 

It was possible to maintain the calorimeter temperature between the guard 
temperatures by controlling the inlet temperature of the water flowing 

through the guard coolant circuit. All water-cooled line joints were 

soft soldered within sleeves € o r  vacuum tight seals. 

test section is shown installed within the vacuum system in Fig. 

Fiberglass mat was placed in the 
The outer guard cylinder was water-cooled 

Thermocouples mounted on the 

A typical cylindrical 
6. 

Cylindrical Powder Type. 

o f  test section, two cylindrical test sections were constructed using 

powder type of insulation. The construction techniques had to be con- 

siderably modified for this type of insulation. 

components from the multilayer type test sections were utilized, 

In addition to the cylindrical multilayer type 

However, many o f  the 

The first modification was to soft solder the calorimeter and end guard 

cylinders together using intervening stainless-steel shim stock (0,010 
inch thick) as thermally resistive tie strip. Tantalum sheathed thermo- 

couples were placed with junctions at regular radial spacing but at dif- 

ferent circumferential spacing around the inside of the calorimeter at the 

midplane, Another set of thermocouples was similarly placed in a parallel 

plane near the end of the test section, 

\ 

The thermocouples were bent s o  

i 
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t h a t  approximately 1-1/2 inches nex t  t o  t h e  junc t ion  w a s  p a r a l l e l  t o  t h e  

t e s t  s e c t i o n  a x i s  t o  minimize e r r o r  by conduction down t h e  wire.  

thermocouples were f a s t e n e d  t o  t h e  ca lo r ime te r  w i th  s o f t  s o l d e r ,  I t  

w a s  necessa ry  t o  n i c k e l  p l a t e  t h e  tantalum shea th  t o  g e t  t h e  s o f t  s o l d e r  

t o  adhere,  

The 

The carbon mandrel w a s  wrapped w i t h  s i x  l a y e r s  o f  0.001-inch-thick rnolyb- 

denum f o i l  and i n s e r t e d  w i t h i n  t h e  calorimeter-guards assembly. 

w a s  spaced w i t h i n  t h i s  assembly by u s i n g  1/4-inch-diameter t h readed  carbon 

rods which screwed i n t o  t h e  carbon mandrel and p res sed  ou t  a g a i n s t  t h e  

guards. Three space r  rods were used a t  each end of t h e  t e s t  s e c t i o n ,  

The mandrel 

End 

inches diameter having 3/4 inch  diameter ho le s  f o r  t h e  carbon h e a t e r  lead- 

out  pos t s .  The e l e c t r i c a l  h e a t i n g  power w a s  a lso generated by a 1/4-inch- 

diameter carbon rod,  

u t i l i z e d  as i n  t h e  previous m u l t i l a y e r  t e s t  s e c t i o n s .  The t e s t  s e c t i o n  

assembly w a s  s e a l e d  t o  t h e  base p l a t e  and mounted i n  t h e  vacuum chamber. 

Powdered premixed i n s u l a t i o n  w a s  poured i n t o  t h e  annu la r  space between 

t h e  mandrel and c a l o r i m e t e r  while  t h e  t e s t  s e c t i o n  w a s  i n  place i n  t h e  

vacuum chamber. 

i n s u l a t i o n  c o n s i s t e d  of foamed z i r c o n i a  blocks,  1 inch  t h i c k  by 4 

The o u t e r  guard and f i b e r g l a s s  mat i n s u l a t i o n  were 

Planar  Mul t i l aye r  Type. The p l ana r  t e s t  s e c t i o n s  c o n s i s t e d  of a l t e r n a t e  

l a y e r s  of metal f o i l  and r e f r a c t o r y  f a b r i c ,  s t acked  upon a f l a t  base p l a t e  

with thermocouples i n t e r p o s e d  between l a y e r s  a t  s p e c i f i c  i n t e r v a l s .  The 

holding f i x t u r e  f o r  t h e  p l ana r  t e s t  s e c t i o n s  c o n s i s t e d  of two 1/2-inch- 

t h i c k  aluminum p l a t e s  14 inches square with co rne r s  rounded t o  a 16,5 inch  

circumscribed diameter.  'The bottom p l a t e  w a s  mounted r i g i d l y  on t h r e e  

pylons b o l t e d  t o  an  inne r  vacuum chamber f l a n g e .  

t o  t h e  bottom p l a t e  with a 14-inch s e p a r a t i o n  d i s t a n c e  by f o u r  a d d i t i o n a l  

pylons mounted a t  t h e  co rne r s .  A t h i r d  1/2-inch t h i c k  aluminum p l a t e  

14 inches by 12 inches had c l ea rance  ho le s  d r i l l e d  f o r  t h e  four  pylons 

s o  i t  could move f r e e l y  i n  t h e  v e r t i c a l  d i r e c t i o n ,  The s t a c k s  of i n su la -  

t i o n  and ca lo r ime te r s  were pos i t i oned  between t h e  bottom p l a t e  and t h e  

A t o p  p l a t e  was b o l t e d  
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movable p l a t e .  The loading f o r c e  on t h e  t e s t  s e c t i o n s  w a s  supp l i ed  by 

p i l i n g  l e a d  b r i c k s  on t h e  movable p l a t e .  

of a p l ana r  t e s t  s e c t i o n  is shown i n  F i g ,  7. F igu re  8 shows a t y p i c a l  

p l ana r  t e s t  s e c t i o n  i n s t a l l e d  i n  t h e  vacuum we l l .  

A side view schematic drawing 

Two t e s t  s e c t i o n s  comprised an assembly, A dummy t e s t  s e c t i o n ,  u s u a l l y  

of c o n s t r u c t i o n  i d e n t i c a l  t o  t h e  a c t i v e  t e s t  s e c t i o n  b u t  without  i n s t r u -  

mentation, w a s  placed on t h e  bottom water-cooled guard and bottom p l a t e .  

A metal  f o i l  h e a t e r  s epa ra t ed  t h e  two t e s t  s e c t i o n s ,  

p l ana r  c a l o r i m e t e r ,  8 inches square and a guard r i n g  2 inches wide covered 

t h e  t o p  of t h e  a c t i v e  t e s t  s e c t i o n ,  

s epa ra t ed  t h e  calorimeter-guard r i n g  assembly from a water-cooled t o p  guard 

su r face .  

of l e a d  b r i c k s  and d i s t r i b u t e d  t h i s  l o a d  a c r o s s  t h e  t e s t  s e c t i o n .  The 

t e s t  s e c t i o n  c l o t h  l a y e r s  were 12.5 inches square.  The me ta l  f o i l  p i eces  

were 8 inches square c e n t e r e d  on t h e  c l o t h  p i eces .  

The water-cooled 

A number of l a y e r s  of f a b r i c  i n s u l a t i o n  

The movable p l a t e  of 1/2-inch-thick aluminum supported t h e  load 

A 2-112 inch t h i c k n e s s  of c l o t h  insulat ' ion w a s  l e f t  a t  t h e  edges t o  reduce 

edge conduction l o s s e s .  

r i n g  guard, and t o p  guard s o  t h a t  temperatures  could be monitored and guard 

water i n l e t  temperatures  a d j u s t e d  t o  minimize h e a t  l o s s e s  t o  o r  from t h e  

ca lo r ime te r .  The thermopile  w a s  close-connected t o  t h e  i n l e t  and o u t l e t  

of t h e  c a l o r i m e t e r .  

f a c e  of t h e  t e s t  s e c t i o n s  and t h e  r i g i d l y  mounted bottom s u r f a c e  were 

provided with f l e x i b l e  t u b i n g  t o  minimize v e r t i c a l  f o r c e s ,  

Thermocouples were placed under t h e  ca lo r ime te r ,  

A l l  t u b i n g  cunnections between t h e  f l o a t i n g  t o p  sur- 

A number of thermocouples were inco rpora t ed  i n t o  each measurement s e c t i o n  

a t  edge and c e n t e r  p o s i t i o n s  s o  t h a t  edge h e a t  l o s s e s  could be determined 

f o r  c o r r e c t i o n  of e f f e c t i v e  thermal c o n d u c t i v i t y  v a l u e s ,  T o t a l  i n s u l a t i o n  

th i ckness  f o r  each loading w a s  determined by measuring t h e  d i s t a n c e  between 

t h e  t o p  edges of two t h i n ,  s t i f f  me ta l  shims i n s e r t e d  nex t  t o  t h e  h e a t e r  

and t h e  ca lo r ime te r  a t  each of t h e  fou r  corners .  
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Photographs were taken of samples of t e s t  s e c t i o n  m a t e r i a l s  be fo re  and 

a f t e r  exposure t o  t h e i r  maximum temperature cond i t ions .  Molybdenum f o i l  

i s  shown i n  F ig .  

i n  F ig .  11, carbon c l o t h  i n  F i g .  12, and 2-percent tungsten/zirconia  i n  

F i g .  13. 
The used molybdenum f o i l  o f t e n  had a somewhat wrinkled purple  and grey 

co lo red  s u r f a c e .  The new s i l i c a  c l o t h  i s  r a t h e r  s o f t  and looks l i k e  a 

loose woven f a b r i c .  The used s i l i c a  c l o t h  i s  s t i f f  and breaks when f l e x e d ,  

9,  s i l i c a  ( R e f r a s i l )  c l o t h  i n  F i g .  10, tantalum f o i l  

The molybdenum f o i l  a s  r ece ived  has a b r i g h t  mi r ro r  f i n i s h .  

The new tantalum f o i l  is s o f t  and m i r r o r  b r i g h t .  The tantalum i s  converted 

t o  gold co lo red  b r i t t l e  tantalum ca rb ide  a t  high temperatures ,  when i n  

c o n t a c t  w i th  carbon, 

i b l e  i n  t h e  photograph. 

b l ack  c l o t h .  Used carbon c l o t h  l o s e s  i t s  l u s t e r  and ga ins  a s l i g h t  

permanent s e t .  However, used carbon f a b r i c  can be f l e x e d  r epea ted ly  

wi thou t  t e a r i n g  o r  f r a c t u r e .  

powder has a l i g h t  cream c o l o r  w i th  small b l ack  s p o t s .  

z i r c o n i a  i s  a s i n g l e  s i n t e r e d  b l ack  mass t h a t  has v e r y  l i t t l e  compressive 

s t r e n g t h .  The crumbled s i n t e r e d  m a t e r i a l  resembles a mixture of s a l t  and 

pepper 

The carbon c l o t h  weave impressions a r e  c l e a r l y  vis- 

The new carbon i s  a s o f t  coarse-woven lus t rous -  

The unused mixture of t ungs t en /z i r con ia  

The used tungsten/  

TEST PROCEDURES 

Equipment Opera ti on 

A f t e r  a t e s t  s e c t i o n  was i n s t a l l e d  i n  t h e  vacuum chamber, h e a t e r  l eads  

and thermocouples were connected and checked f o r  c o n t i n u i t y  and r e s i s t a n c e  

t o  ground. The b e l l  jar  w a s  t hen  put i n  place and t h e  system roughed down 

slowly a s  a precaut ion t o  prevent t h e  i n s u l a t i o n  from bi l lowing.  The d i f -  

f u s i o n  pump was a c t i v a t e d  a f t e r  system p res su re  reached t h e  100l.l range. 

Outgassing a t  ambient temperature wi th  t h e  f i v e  pumps u s u a l l y  took approxi- 

mately 30 minutes t o  2 hours be fo re  t h e  d i f f u s i o n  pump could be a c t i v a t e d .  

The d i f f u s i o n  pump was u s u a l l y  operated overnight  be fo re  t h e  f i r s t  h e a t i n g  

cyc le  was i n i t i a t e d .  P r i o r  t o  t e s t i n g ,  t h e  i c e  b a t h  and LN2 c o l d  t r a p  
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were f i l l e d ,  and t h e  c a l i b r a t i o n  of t h e  m i l l i v o l t  r eco rde r  w a s  checked 

a t  zero and 50 m i l l i v o l t s ,  

w i th in  l e s s  than 20.01 m i l l i v o l t s ,  

The r eco rde r  zero and span were a d j u s t e d  

The ice  b a t h  was allowed t o  come t o  equ i l ib r ium (15 minutes).  

i n i t i a l l y  was a p p l i e d  t o  t h e  t e s t  s e c t i o n  a t  t h e  maximum rate a v a i l a b l e  

o r  a t  a r a t e  which was  l i m i t e d  by t h e  outgassing c h a r a c t e r i s t i c s  of t h e  

t e s t  s e c t i o n  and t h e  pumping speed of t h e  vacuum system. 

s e c t i o n  i n s i d e  temperature reached a d e s i r e d  va lue ,  h e a t i n g  power was 

reduced manually t o  maintain t h i s  temperature l e v e l  f o r  t h e  remainder 

of t h e  h e a t i n g  cyc le .  The maximum a p p l i e d  power level and t h e  observed 

outgassing l e v e l  are d i scussed  i n  conjunct ion wi th  t h e  r e s u l t s  f o r  each 

t e s t  s e c t i o n ,  

Power 

A f t e r  t h e  t e s t  

Each t e s t  s e c t i o n  w a s  sub jec t ed  t o  two o r  more  t r a n s i e n t  h e a t i n g  cyc le s  

f o r  t h e  purpose of ob ta in ing  a d d i t i o n a l  d a t a  on t h e  e f f e c t  of outgassing 

on e f f e c t i v e  thermal  conduc t iv i ty  as a f u n c t i o n  of t ime. 

s i l i c a  t e s t  s e c t i o n s  were u s u a l l y  operated a t  equa l  power l e v e l s  f o r  

each h e a t i n g  cyc le  because t h e  chromel-alumel thermocouples could t o l e r a t e  

t h e  maximum exposure temperatures .  The f i r s t  h e a t i n g  cyc le  f o r  each 

tantalum/carbon o r  tungsten/zirconia  t e s t  s e c t i o n  was i n t e n t i o n a l l y  l i m i t e d  

t o  a maximum temperature of approximately 2100 F t o  ob ta in  a d d i t i o n a l  l o w  

temperature d a t a .  The chromel-alumel thermocouples burned out  i n  t h e s e  

t e s t  s e c t i o n s  as t h e  temperatures  exceeded 2400 F i n  t h e  second h e a t i n g  

cyc le  L1 

hours) a t  t h e  h i g h e s t  temperatures  (-3500 F). 

The molybdenum/ 

The tungsten-rhenium thermocouples had l i m i t e d  u s e f u l  l i f e  (2 

Trans i en t  Data Recordinq 

Trans i en t  d a t a  s e t s  were taken a t  r e g u l a r  time i n t e r v a l s  as power w a s  

a p p l i e d  t o  each t e s t  s e c t i o n .  A t r a n s i e n t  d a t a  s e t  c o n s i s t e d  of m i l l i -  

v o l t  va lues  of a l l  o p e r a t i v e  thermocouples a long  wi th  i d e n t i f y i n g  channel 

number; m i l l i v o l t  va lues  of thermopiles  and channel i d e n t i f i c a t i o n ;  

water f l o w r a t e s  through t h e  c a l o r i m e t e r ,  guards,  and power l eads ;  vacuum 

i 
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pressure readings; heating current and voltage; time and date. A complete 

data set constituted a run and was given a four digit run number, 

first two digits were test section identification. 

were run numbers sequenced by time, 

The 
The last two digits 

Steady-State Data Recording. 
temperatures throughout a test section approached a constant value at 

each location, 

steady state was deemed to exist,, 

Steady-state data sets were obtained when 

Consecutive data sets were compared point by point until 

Data Ana lys i s 

Two stages were required in analyzing the recorded data. The first step 

was to scale millivolt values into temperature units, The second step was 

to select temperatures to be used in calculating effective conductivities. 

Millivolt values were scaled into temperature units using two computer 
programs written in Basic Language for a General Electric time sharing 

computer, One program scaled chromel-alumel data referenced to 32 F in 

the temperature range from ambient to 2500 F. The 0- to 55-millivolt 

range was subdivided into eleven 5-millivolt ranges each of which was 

fitted with a second order polynominal equation., 
was accurate to within 20.3 F of the NBS Circular No. 561 data over the 

entire temperature range, 

This scaling program 

A second scaling program was written (in Basic Language) for the tungsten- 

5 percent rhenium/tungsten-26 percent rhenium thermocouple system with 
32 F as reference, Two-millivolt subintervals were fitted with second order 

polynomials 
was within 50.2 F of published Hoskins Co 

four millivolt data sets were reduced to yield 8278 temperature points in 

the first stage of the data reduction program. 

for the temperature range from ambient to 3800 F;  accuracy 

data. Three-hundred and eighty 
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Temperature v a l u e s  are  s e l e c t e d  from t h e  s c a l e d  data as i n p u t  t o  both 

s t eady- s t a t e  d a t a  and t r a n s i e n t  data computer programs which c a l c u l a t e  

e f f e c t i v e  thermal c o n d u c t i v i t i e s .  Two o r  more thermocouple j u n c t i o n s  

were o f t e n  placed i n  t h e  same l o c a t i o n  i n  a t e s t  s e c t i o n  f o r  redundancy 

i n  temperature measurements. 

t h e  same, a simple average w a s  u s u a l l y  t aken ,  

t u r e s  e x i s t e d ,  graphs of temperature ve r sus  t i m e  o r  p o s i t i o n  were used 

as a n  a i d  i n  s e l e c t i n g  t h e  m o s t  reasonable  temperature  va lue ,  

When c a l c u l a t e d  temperatures  were n e a r l y  

I f  a d i s p a r i t y  i n  tempera- 

Steady-State Heat T r a n s f e r  

A computer program w a s  w r i t t e n  i n  Basic Language f o r  t h e  General E l e c t r i c  

time sha r ing  computer t o  reduce s t eady- s t a t e  d a t a  sets  i n t o  e f f e c t i v e  

thermal c o n d u c t i v i t i e s  a s  a f u n c t i o n  of temperature.  This  program s o l v e s  

t h e  f i n i t e  d i f f e r e n c e  form of t h e  l i n e a r  conduction equa t ion  t a k i n g  i n t o  

account  v a r i a b l e  average conduction a r e a  a t  each p o s i t i o n  i n  a t e s t  s e c t i o n ,  

and a x i a l  h e a t  l o s s e s  a s  a f u n c t i o n  of p o s i t i o n .  The equat ion i s  of  t h e  

form: 

1 OR 
(qc + g l o s s  

k = - -  
e Xc AT 

where t h e  symbols a r e  de f ined  i n  t h e  nomenclature. 

p l ana r  t e s t  s e c t i o n  d a t a  s e t s  could be accommodated u s i n g  t h i s  program 

because of i t s  i n c o r p o r a t i o n  of t h e  h e a t  l o s s  determinat ion.  

Both t h e  c y l i n d r i c a l  and 

T r a n s i e n t  Heat T rans fe r  

Another computer program w a s  w r i t t e n  i n  F o r t r a n  I1 language f o r  t h e  General 

E l e c t r i c  time s h a r i n g  computer t o  s o l v e  t h e  f i n i t e  d i f f e r e n c e  form of t h e  

i n t e g r a t e d  c y l i n d r i c a l  t r a n s i e n t  conduction equat ion inc lud ing  t h e  e f f e c t s  
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of axial heat losses, This equation is of the form: 

4 

R1 c 
% 

The transient data computer program output is effective thermal conductiv- 
ity as a function of temperature and time. 

inferred through the time dependence which is recorded in the data set. 

The effect of pressure can be 

A simple and general technique had to be adopted for determining the space 
and time derivatives in the above equation. Various curve-fitting pro- 
cedures were attempted for temperature data sets consisting of all radial 

positions at a given time o r  vice-versa. 
the curve-fitting procedure and obtain stable derivative functions for an 

entire set of data. The.refore, a "floating second-order polynominal" curve 

fit was adopted for all interior points of a data matrix. This amounts to 

taking double differences and yields accuracy on the order of cubic terms. 
Instability in the end point derivative determinations prompted use of 

simple differences for all exterior points of the temperature data matrix. 

It was not possible to generalize 

Thermal property values for input to the transient computer program were 

obtained from Ref. 1. Appropriate averages of composite properties were 

computed by the program. 

E!RBOR ANALYSIS 

A logarithmic differentiation of the linear steady-state heat conduction 
equation results in the expression that the percentage error in the 

effective thermal conductivity is less than o r  at most equal t o  the sum 
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of the absolute values of the percentage errors in the heat flux, the 
conduction area, the conduction distance and the temperature difference. 

The heat flux and conduction area have constituent errors associated 

with their determination. These will be discussed below under the sub- 

headings of the error factors listed. 

Heat Flow 

A number of factors enter into determination of total heat flow at a given 

location in a test section. The first breakdown o f  heat flow is into 
calorimeter heat load and heat losses, The calorimeter heat load is 

determined by measuring a water flowrate and a temperature difference. 

Water flowrate is measured with a graduate cylinder in conjunction with 

a sweep second hand on a large electric clock. 
is measured using lo-element thermopiles. 

of water collected is assumed to be within 1/2 percent because of cali- 

Temperature difference 
The determination of weight 

bration accuracy and scale readability on the graduate cylinders. 
lection time can be controlled within 1/2 second o u t  of  60 seconds o r  

approximately 1 percent. 
cent because of k0.02 millivolt uncertainty in recording a 2-millivolt 

(average) signal; thermopile accuracy is believed to be well below 1 
percent in the temperature range utilized, The two thermopiles showed 

Col- 

Temperature difference is known within 1 per- 

excellent agreement, 

within 3-112 percent. 

Calorimeter heat load accuracy is believed to be 

Heat loss in two areas can be considered: calorimeter heat loss, and test 

section axial heat loss, 

mize these losses by using heated guard water to match temperatures and 

prevent extraneous heat transfer. 

of 30 F between guards and calorimeter, thermopile output changed 4 percent. 
Therefore, a calorimeter heat loss of 1/2 percent is assumed for the usual 

temperature difference of 4 o r  5 F. 

The calorimeter-guard system was built to mini- 

In an intentional temperature difference 
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T e s t  s e c t i o n  axial h e a t  l o s s e s  a r e  accounted f o r  i n  t h e  c a l c u l a t i o n  of 

e f f e c t i v e  thermal c o n d u c t i v i t i e s .  

a r e  b e l i e v e d  t o  be c o r r e c t e d  t o  w i t h i n  10 pe rcen t  r e s u l t i n g  i n  a n  addi- 

t i o n a l  u n c e r t a i n t y  of 1. pe rcen t .  

pe rcen t ,  and t o t a l  s t eady- s t a t e  h e a t  f low u n c e r t a i n t y  i s  5 percent .  

A x i a l  h e a t  losses of up t o  10 pe rcen t  

Heat l o s s  u n c e r t a i n t y  adds up t o  1-1/2 

Conduction Area 

Because t h e  l i n e a r  h e a t  c o n d u c t i o n q u a t i o n  i s  u t i l i z e d  i n  a c y l i n d r i c a l  

geometry, ano the r  e r r o r  i s  introduced,  i n  a d d i t i o n  t o  measurement errors. 

The maximum magnitude of t h i s  e r r o r  (Appendix B, Ref .  2) is always l e s s  

than 1 pe rcen t  f o r  t he  t e s t  s e c t i o n s  of t h e  p re sen t  s tudy.  Calor imeter  

l eng th  i s  known w i t h i n  21/32 inch  of 8 inches o r  112 pe rcen t ,  

diameter a s s o c i a t e d  with t h e  conduction a r e a  i s  known wi th in  21/72 inch 

of 4 inches o r  1 pe rcen t .  Therefore ,  t h e  conduction a r e a  is  known wi th in  

2-1/2 percent  

The average 

Conduc ti on Distance 

The d i s t a n c e  between thermocouple s t a t i o n s  i s  w e l l  de f ined  i n  m u l t i l a y e r  

i n s u l a t i o n  systems because t h e  t o t a l  i n s u l a t i o n  th i ckness  e s s e n t i a l l y  i s  

subdivided i n t o  m u l t i p l e s  of an  i n t e g e r  based f r a c t i o n .  Therefore ,  t h e  

percentage e r r o r  i n  conduction d i s t a n c e  amounts t o  t h e  percentage e r r o r  

i n  t h e  i n s u l a t i o n  t h i c k n e s s .  A t h i c k n e s s  of 1 inch w a s  known w i t h i n  

*1/64 inch  o r  1-112 p e r c e n t ,  

Temperature Di f f e rences  

The temperature  d i f f e r e n c e  accuracy depends upon r eco rde r  and thermocouple 

accuracy,  Recorder accuracy i s  +0.01 m i l l i v o l t  cons ide r ing  d i f f e r e n t i a l  

va lues  only which corresponds t o  k0.5 F f o r  chromel-alumel o r  1.0 F f o r  

tungsten-5 pe rcen t  rhenium/tungsten-26 pe rcen t  rhenium. 

w a s  u t i l i z e d  throughout t h i s  s tudy ,  

i s  3/8 pe rcen t ,  

t u r e  a t  2000 F, 

Premium grade wire 

Guaranteed accuracy f o r  premium w i r e  

This  would amount t o  8 F u n c e r t a i n t y  i n  a b s o l u t e  tempera- 

However, experience has  shown t h a t  premium thermocouple 

R-7548 



wire is usually accurate within 2 to 5 F of the laboratory standard 

platinum-platinum/lO-percent rhodium thermocouples calibrated by N.B.S. 

(No. 162069 A and B). 

tungsten rhenium thermocouples showed agreement many times within 2 F 

and most of the time within 5 F. 

couples range from 100 to 800 F. 

differences could range between 2 and 10 percent with an average of 6 
percent 

Inplace comparison of the chromel-alumel and 

Temperature differences between thermo- 

Therefore, percent error in temperature 

Taking the sum of the absolute values of the listed errors, an expected 
maximum error range of 12 to 20 percent is obtained. However, some of 
the stated errors can be expected to mutually cancel each other. There- 

fore, an actual error somewhat less than the above numbers would be ex- 
pected (on the order o f  10 percent), 

Heat balances were performed for random data sets o f  a number of test 
sections; values ranged near 90 percent of the input power, 

RESULTS AND DISCUSSION 

The experimental thermal property results which were obtained from 15 o f  

16 test sections will be presented and discussed in this section, 
from molybdenum/silica 
instrumentation had failed during test because of overtemperature. Moly- 

bdenum/silica No. 5 was constructed to duplicate No. 4 ,  

Results 
test section No. 4 were not processed as its 

A systematic variation in geometrical factors and materials was followed 

in establishing the testing matrix. Table 2 lists test section identifica- 

tion, the run series designation, and the sequence of  variation in parameters. 

Results are presented following the parametric change accorded each test 

section. 
avoided. After discussions of results per test section, a cross compari- 

son is made by grouping test sections and material combinations. 

In some cases, duplication of parameter change could not be 
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TABLE 2 

VARIATIONS OF TEST SECTION PARAMETEE3 

T e s t  Sec t ion  

Mo lybdenum/Si 1 i ca 
(Cylindrica 1) 

No, 1 

No. 2 

No, 3 
No. 4 

No, 5 
No, 6 
No. 7 
No. 8 

Tantalum/Carbon 
(Cy l ind r i ca l  

No. 1 

No. 2 

No. 3 

Carbon 
(Cy1 i n d r  i ca 1) 

No. 1 

TungstenILi r c  onia  

No. 1 

No, 2 

Molybdenum/Silica 

No, 9 

Tanta lum/Ca rbon 

No. 4 

RUn 
S e r i e s  

0100 

0200 

0300 

0500 

0600 

0700 

0400 

0800 

0900 

1000 

1100 

1200 

1300 

1400 

1500 

1600 

Change of Parameter 

Base case  (p lus  argon t e s t s )  

D i f f e r e n t  purchase l o t  of m a t e r i a l  

Small I D  ( g r e a t e s t  t h i ckness )  

(Not used f o r  d a t a )  

Small OD ( l e a s t  t h i ckness )  

Larger space r  t o  f o i l  r a t i o  

Duplicate  No. 6 
S h o r t e r  t e s t  s e c t i o n  l eng th  

Base case  

Duplicate  No. 1 

Duplicate  No. 1 (p lus  argon t e s t s )  

E l imina te  tantalum f o i l  

10 w/o tungsten 

2 w/o tungsten 

P lana r ,  t h r e e  loading p res su res  

P lana r ,  t h r e e  loading p res su res  
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Molybdenum/Silica No. 1 

Transient effective thermal conductivity (k,) values as a function of 
temperature are presented in Fig. 14 for the first heating cycle of this 

test section. 
lower temperature range with time. Steady-state values of k for argon 

pressure levels of 0, 400, 800, and 1600 microns are given in Fig. 15. 
Note the regular increase in effective thermal conductivity with pressure 

over the entire temperature range. Comparison of Fig. 14 and 15 strongly 

suggests that the transient (time) effect on k 

pressure effect, 

Note the progressive decrease in conductivity in the 

e 

in Fig. 14 is really a e 
Gas pressure within the vacuum chamber during the first 

heating cycle was less than 6 microns within the time interval represented 
in Fig. 14. However, the gas pressure within the test section was un- 

doubtedly much higher initially and decreased with time, as evidenced by 

the factor of 15 change in chamber pressure,during this time interval. 
For design convenience, a curve fit of the results presented in Fig. 15 

is included as Appendix C of th;s report, 

Molybdenum/Silica No, 2 

This test section was made to be identical to the first test section except 
f o r  having different purchased lots of material. The transient data for 

the first heating cycle and the steady-state data at various argon pressure 
levels are essentially identical to the corresponding data presented in 

Fig. 14 and 15. Figure 16 depicting transient data, is to be compared 

with Fig, 14. 

Molybdenum/Silica No, 3 

The third test section had a smaller inside diameter (and thicker insula- 

tion) than the two previous test sections, to determine thickness scaling 
effects. A set of transient temperature data is given in Fig. 17 to show 
the change in temperature profile with time. The temperature profiles 

which start concave upward change through S-shaped curves to convex upward 
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shapes. 

conductivity with increasing temperature, Transient values of k derived 

from the temperature data of Fig. 17 are shown in Fig. 18. Comparable 

bell jar gas pressures were maintained throughout the first heating cycle 
with this test section as with the first test section, 

This behavior is characteristic of.materials which have increasing 

e 

Excellent agreement is evident when the results of Fig, 18 are compared 
to those o f  Fig. 14. 
depicted for the second heating cycle of this test section in Fig. 19; a 
much smaller spread in time dependence is noted for the second heating 

cycle than for the first. 

transient results approached more closely steady-state results, 

Transient effective thermal conductivity values are 

With increasing time of exposure to temperature, 

Molybdenum/Silica No, 4 

A malfunctioning recorder resulted in overtemperature and loss of instru- 

mentation, therefore data were not reduced. 

Molybdenum/Silica No. 5 

This test section was a duplicate of No, 4 and had a maximum inside diameter 

and minimum outside diameter ( o r  thinnest insulation). 

are presented in Fig. 20 for the first heating cycle during which time low 
(less than 1 micron) vacuum was maintained. The results exhibit the char- 

acteristics similar to those of other test sections; i.eo, decreasing values 

of k with time and close approach to steady-state values. 

Transient results 

e 

Steady-state values are presented in Fig, 21 for six runs taken at the end 
of three heating cycles. Excellent agreement is evident between the latter 

transient results and the steady-state results. Excellent agreement is 

also exhibited by the data of Fig. 20 and the latter time values of Fig. 

21. This shows that no radius ratio o r  thickness effect upon k is of 

consequence for the extremes of  the cases tested, 
e 
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Trans ien t  data which were taken a l s o  i n  t h e  second and t h i r d  h e a t i n g  cyc le s  

show l i m i t e d  sp read  with t ime,  

power supply was used,  and t r a n s i e n t  temperature  data were taken a t  10- 

and 40-minute i n t e r v a l s .  L i t t l e  d i f f e r e n c e  i n  r e s u l t s  i s  r evea led  by the 

two  d a t a  s e t s  except  t h a t  small temperature d i f f e r e n c e s  a t  t h e  low tempera- 

t u r e  range i n  t h e  lo-minute  i n t e r v a l  r e s u l t  i n  much more d a t a  s c a t t e r ,  as 

would be expected, 

I n  t h e  t h i r d  h e a t i n g  c y c l e ,  t h e  l a r g e r  

Molybdenum/Silica No. 6 

The spacer- to-foi l  t h i ckness  r a t i o  was inc reased  by a f a c t o r  o f  t h r e e  

over t h e  preceding t e s t  s e c t i o n s  by wrapping t h r e e  l a y e r s  o f  c l o t h  per  

l a y e r  of f o i l ,  

h e a t i n g  cyc le s  are  presented i n  F ig .  22 f o r  l o w  gas p re s su re  cond i t ions ,  

These values  a r e  approximately 35 percent  h ighe r  t h a n  t h e  corresponding 

va lues  f o r  m u l t i l a y e r  molybdenum/silica t e s t  s e c t i o n s  having one l a y e r  

of c l o t h  per  l a y e r  of f o i l .  T r a n s i e n t  k va lues  ob ta ined  from t h e  t w o  

h e a t i n g  cyc le s  a l s o  have correspondingly h ighe r  v a l u e s ,  

Steady-state  va lues  of k obtained a t  t h e  end of t w o  e 

e 

Molybdenum/Silica No. 7 

This t e s t  s e c t i o n  w a s  as d u p l i c a t e  of No. 6 ,  
va lues  and t r a n s i e n t  k values  a r e  e s s e n t i a l l y  i d e n t i c a l  t o  corresponding 

va lues  f o r  t e s t  s e c t i o n  molybdenum/silica No. 6 

Both t h e  s t eady- s t a t e  ke 

e 

Molybdenum/Silica No. 8 

The l eng th  of t h i s  t e s t  s e c t i o n  was 10 inches compared t o  t h e  16 inch 

l eng th  of a l l  previous t e s t  s e c t i o n s .  

were used f o r  a l l  t e s t  s e c t i o n s ,  No. 8 had only 1 inch  of edge i n s u l a t i o n  

compared t o  4 inches f o r  t h e  o the r s .  Therefore ,  t e s t  s e c t i o n  N o ,  8 could 

be expected t o  have l a r g e r  end e f f e c t s .  The t r a n s i e n t  r e s u l t s  of t h e  

second h e a t i n g  cyc le  (Fig.  23 ) agree  we l l  with t h e  preponderance of t h e  

previous data, Steady-state  r e s u l t s  shown i n  Fig.  24 a r e  10 pe rcen t  high 

Because 8-inch-long ca lo r ime te r s  
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throughout t h e  temperature  range,  Because of t h i s  g e n e r a l l y  good agree- 

ment, t es t  s e c t i o n  l eng th  i s  n o t  considered t o  be s i g n i f i c a n t  i n  a f f e c t i n g  

k va lues .  e 

Tantalum/Carbon No 1 

Trans i en t  e f f e c t i v e  thermal conduc t iv i ty  va lues  a r e  shown i n  F ig .  25 and 

26 f o r  t h e  f i r s t  ( l o w  temperature) and second (high temperature)  h e a t i n g  

c y c l e s ,  The r e s u l t s  from t h e  f i r s t  h e a t i n g  c y c l e  a r e  s l i g h t l y  lower (10 

pe rcen t )  t han  r e s u l t s  a t  corresponding temperature from t h e  second h e a t i n g  

cyc le ,  

s i l i c a ,  namely a decrease i n  k with t ime,  The l a t t e r  t ime t r a n s i e n t  

r e s u l t s  of F ig ,  25 ag ree  ve ry  w e l l  with the  s t eady- s t a t e  r e s u l t s  of F ig .  27, 

The t r a n s i e n t  e f f e c t  upon ke has t h e  same t r e n d  as wi th  molybdenum/ 

e 

Tantalum/Carbon No. 2 

This  t e s t  s e c t i o n  was a d u p l i c a t e  of tantalurn/carbon No. 1 ;  both t r a n s i e n t  

and s t eady- s t a t e  r e s u l t s  were i d e n t i c a l  t o  those r e p o r t e d  f o r  tantalum/ 

carbon No.  1, No d e t a i l e d  k va lues  a r e  presented f o r  t h i s  t e s t  s e c t i o n .  

However, it i s  i n t e r e s t i n g  t o  n o t e  t h a t  a s e t  of temperature  decay curves 

presented i n  F i g ,  28 f o r  t h i s  t e s t  s e c t i o n  match i n  concept hypothesized 

decay curves i n  t h e  f i f t h  q u a r t e r l y  r e p o r t  (Ref. 3 ) 

e 

Tanta lum/Carbon No 3 

This  t e s t  s e c t i o n  a l s o  d u p l i c a t e d  tantalum/carbon No, 1 f o r  t h e  purpose 

of providing a d d i t i o n a l  d a t a  on t h i s  important m a t e r i a l s  systems. AS 

w i t h  t he  second t e s t  s e c t i o n ,  a very  c l o s e  match of t r a n s i e n t  and steady- 

s t a t e  r e s u l t s  was obtained i n  comparison t o  t h e  r e s u l t s  of tantalum/ 

carbon No, 1. For t h e  sake of b r e v i t y ,  t h e s e  d a t a  w i l l  n o t  be presented 

i n  d e t a i l ;  though, b e s t  curve f i t s  of a l l  s t eady- s t a t e  d a t a  a r e  p re sen ted  

f o r  a l a t e r  comparison. 
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Argon pressurization tests at -1, 400, 800, and 1 6 0 0 ~  were performed with 
this test section at a maximum temperature of 2000 F. The results of these 
tests are shown in Fig. 29, A regular increase in k with increasing 

pressure is noted over the temperature range just as occurred with the 
molybdenum/silica test sections (Fig. 15) Though the values are somewhat 

displaced in absolute magnitude because of different materials, comparison 

of Fig, 15 and 29 indicates that the magnitude of the effect of gas pressure 
is equivalent for both material systems, 

e 

Carbon No. 1 

An extreme case of a high spacer-to-foil thickness ratio, i.e., no foil, 
was imposed, to determine the total contribution of tantalum in establishing 
the insulation effectivenss of the tantalum/carbon material system, 

sient k values, showing very little time dependence, are presented in 

Fig. 30 and 31 for a low- and high-temperature heating cycle, The match 

between the curves is excellent except for a single group of data in each 
figure representative of a single common measurement station. The carbon 

test section k 
carbon values at low temperature (500 F) but approach within 5 percent at 
high temperature (3500 F) .  

Tran- 

e 

values are approximately 50 percent higher than the tantalum/ e 

Tungsten/Zirconia No. 1 

A low- and high-temperature heating cycle were imposed upon this test 
section. The transient effective thermal conductivity values for these 

two heating cycles are presented in Fig. 32 and 33. It is apparent in com- 
paring the two sets of results that a gross change in k occurred between 

the two heating cycles, Upon disassembly of this test section, it was 

observed that gross sintering had occurred to form a weak crusty structure 

throughout the insulation, Before the second heating cycle, this test 
section had been subjected to vibration from the forepumps for approxi- 
mately 120 hours  at a frequency of about 5 cycles per second, 

e 

Gross  

segregation o f  the tungsten was noted as reported in a subsequent section 

o f  this report. 
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Tungsten/Zirconia No. 2 

The weight percentage of t ungs t en  w a s  decreased from 10 percent  i n  t h e  

f i r s t  t e s t  s e c t i o n  t o  2 pe rcen t  i n  t h e  second one. 

temperature  h e a t i n g  c y c l e s  were imposed. 

s en ted  i n  Fig.  34 and 35. The low-temperature h e a t i n g  c y c l e  va lues  of 

F ig ,  34 appear  roughly e q u i v a l e n t  t o  t hose  of Fig.  32 of t h e  previous 

t e s t  s e c t i o n ,  However, a s i g n i f i c a n t  change i n  magnitude of k i s  ap- 

pa ren t  i n  t h e  high-temperature h e a t i n g  cyc le  va lues  dep ic t ed  i n  F i g ,  35 
compared t o  F i g ,  33.  
values  of k 

values  inc reased  by approximately 20 percent .  

Again, low- and high- 

The k va lues  ob ta ined  a r e  pre- e 

e 

By dec reas ing  t h e  tungsten con ten t ,  t h e  low-temperature 

inc reased  by as much as 50 pe rcen t  and t h e  high-temperature e 

Molybdenum/Silica No, 9 (Planar) 

T h i s  t e s t  s e c t i o n  w a s  c o n s t r u c t e d  and t e s t e d  t o  determine t h e  e f f e c t  of 

mechanical loading p res su re  upon t h e  e f f e c t i v e  thermal c o n d s c t i v i t y ,  Three 

s e t s  of s t eady- s t a t e  runs were conducted a t  loading p res su res  of 0.05, 

0-5 ,  and 1.8 p s i .  The va lues  of thermal conduc t iv i ty  a t  t h e  two h i g h e s t  

loading p res su res  were r a t i o e d  t o  t h e  va lue  a t  t h e  lowest loading pres- 

s u r e ,  

where higher  loading p res su re  r e s u l t s  i n  higher  va lues  of k . 
The ra t ios  are  presen ted  as a f u n c t i o n  of temperature  i n  Fig.  36, 

e 

The i n c r e a s e  i n  c o n d u c t i v i t y  wi th  p re s su re  i s  due t o  compression of t h e  

m a t e r i a l s  and reduced c o n t a c t  r e s i s t a n c e ;  t h e  i n c r e a s e  with temperature 

might be due t o  i nc reased  s i n t e r i n g  of f i b e r s .  I t  i s  recommended t h a t  

t h e  s t eady- s t a t e  thermal conduc t iv i ty  de r ived  from t h e  c y l i n d r i c a l  t e s t  

s e c t i o n s  be used as t h e  base va lues .  

Tantalum/Carbon N o ,  4 ( P l a n a r )  

The e f f e c t  of loading p res su re  w a s  s t u d i e d  wi th  t h i s  m a t e r i a l s  system by 

conducting t h r e e  s e t s  o f  s t eady- s t a t e  tes ts  a t  t h e  loading p res su res  of  

0.05, Ou5, and 1 , 8  p s i .  Temperatures were l i m i t e d  s o  t h a t  thermocouple 
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accuracy would n o t  be a f f e c t e d  by temperature-induced degradat ion.  

r e s u l t s  a r e  presented  i n  F i g ,  37 as r a t i o s  of e f f e c t i v e  thermal  conductiv- 

i t y  based upon t h e  va lue  obta ined  a t  t h e  lowest (0.05 p s i )  loading  p res su re .  

The d a t a  of F ig .  37 i n d i c a t e  a decreas ing  dependence of t h e  r a t i o  of  con- 

d u c t i v i t i e s  with i n c r e a s i n g  tempera ture ,  Thus, t h e  apparent  asymptot ic  

approach of t h e  r a t i o  toward u n i t y  w a s  f o r t u i t o u s  i n  t h a t  h igher  temperature  

da t a  were n o t  necessary ,  

The 

The noted  i n c r e a s e  i n  t h e  c o n d u c t i v i t y  r a t i o  with p re s su re  fo l lows  t h e  

t r e n d  e x h i b i t e d  by molybdenum/silica. However, t h e  decrease wi th  tem- 

pe ra tu re  i s  n o t  adequate ly  expla ined  by l ack  of s i n t e r i n g .  A p o s s i b l e  

exp lana t ion  might be a decrease  i n  t h e  r e l a t i v e  e f f e c t  of l a t t i c e  conduc- 

t i o n  w i t h  i n c r e a s i n g  temperature .  

DATA COMPARISONS 

I n  t h i s  s e c t i o n  of t h e  r e p o r t ,  graphs a r e  presented  comparing curve f i t s  

of s teady-s ta te  va lues  of e f f e c t i v e  thermal  c o n d u c t i v i t i e s  ve r sus  tempera- 

t u r e  f o r  each m a t e r i a l s  combination. Average curve f i t s  having comparable 

condi t ions  a r e  superimposed on a s i n g l e  graph f o r  comparison. F i n a l l y ,  

t h e  average tantalum/carbon and molybdenum/sicica da ta  a r e  compared t o  a 

r a d i a t i o n  model w i th  r e s p e c t  t o  t h e  dependence k upon temperature .  e 

Mo lyb denum/S i 1 ica 

The curve f i t s  of s t eady- s t a t e  r e s u l t s  from t h e  seven u s e f u l  t e s t  s e c t i o n s  

a r e  given i n  F ig ,  38. I t  is apparent  t h a t  t h e r e  a r e  t w o  groupings o f  

r e s u l t s .  One group comprises t e s t  s e c t i o n s  1 through 5 which have t h e  

lower spacer - to- fo i l  t h i ckness  r a t i o .  The second group comprises t e s t  

s e c t i o n s  6 ,  7, and 8. 

of t h r e e )  spacer - to- fo i l  t h i ckness  r a t i o ,  

T e s t  s e c t i o n s  6 and 7 had t h e  l a r g e r  (by a f a c t o r  

Genera l ly ,  agreement among comparable da t a  i s  w i t h i n  + l o  percent .  The 

l i m i t e d  s t eady- s t a t e  r e s u l t s  of  t e s t  s e c t i o n  8 were prev ious ly  noted  t o  

be h ighe r  t han  ex tens ive  t r a n s i e n t  r e s u l t s ,  and may t h e r e f o r e  be discarded.  
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The higher conductivity at the higher spacer-to-foil thickness ratio suggests 

the existence of an optimum in terms of weight and cost in designing an 
insulation system using these materials, 

Tanta lum/Carbon-Carbon 

The curve fits of steady-state results from the three tantalum/carbon and 
the one carbon test sections are given in Fig. 39. Excellent agreement 

throughout the entire temperature range is exhibited by the tantalum carbon 

results. 
optimization for insulation system design. 

The higher conductivity of the carbon test section also suggests 

Tungsten/Zirconia 

The curve fits of the higher temperature heating cycles for the two tungsten 

zirconia test sections are presented in Fig. 40. 

temperature heating cycle were disregarded because thermal conditioning 

precluded the initial state of the insulation. 

The results of the lower 

Cross Comparison of Material Systems 

, 
Averaged curve fits are presented in Fig. 41 for the molybdenum/silica 

multilayer insulation system at two spacer-to-foil thickness ratios (32/l 
and 90/1), for the tantaluin/carbon multilayer insulation system including 

the case of no f oi 1 , and f o r  the tungsten/zirconia powder insulation- ,' system. 
At temperatures below 2000 F, molybdenum/silica is clearly the superior 
insulation. Above 2000 F, tantalum/carbon is clearly superior ., The 

tungsten/zirconia insulation systein has an order of magnitude higher 

conductivity than the other materials at the low temperatures but is 
only slightly higher (30 percent) at the highest temperatures. 

Comparison o f  Theory and Experiment 

A theoretical analysis (Ref, 

heat transfer mode through multilayer insulation systems at the higher 

2) established that radiation is the dominant 

30 R-7 54 8 
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, 

temperatures and predicted that the effective thermal conductivity is 

proportional to the cube of the temperature, The average curve fits of 

the tantalwn/carbon and molybdenum/silica results from Fig. 41 are replotted 

in Fig, 42 as the logarithm of  lie versus the logarithm of temperature, 

line with a slope of 3 is arbitrarily positioned on Fig. 42 f o r  comparison. 

A 

The tantalum/carbon results at the highest temperature seem to establish 
the predicted slope. 
greater than 3 above 1700 F. This is believed to be due to the observed 

sintering of silica fibers. 

However, the molybdenum/silica results have a slope 
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Figure 42. Comparison of Temperature Dependence of Experimental 
Effective Thermal Conductivity Values With Theoretical 
Radiation Model 
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THEXDlAL STABILITY AND COMPATIBILITY 

P r e s e n t  i n s u l a t i o n  systems a r e  n o t  t o t a l l y  s t a b l e  a t  temperatures  asso- 

c i a t e d  w i t h  b u r i e d  s p a c e c r a f t  r o c k e t  engines.  E f f i c i e n t  m a t e r i a l s  t h a t  

provide a b a r r i e r  t o  h e a t  flow a t  high temperatures  n e c e s s a r i l y  m u s t  have 

a v e r y  l o w  bulk d e n s i t y  t o  minimize s o l i d  conduction and a means of s c a t -  

t e r i n g  r a d i a t i o n .  Even though t h e s e  m a t e r i a l s  a r e  o r d i n a r i l y  considered 

t o  be s t a b l e ,  d e n s i t y  and r e f l e c t a n c e  va lues  can change enough t o  a f f e c t  

thermal p r o p e r t i e s  under s e r v i c e  cond i t ions .  

dens i fy ,  and c o n t a c t i n g  p a r t i c l e s  ( g r a i n s  or f i b e r s )  bond due t o  s i n t e r i n g .  

R e f l e c t i v e  s u r f a c e s  of metals  ( f o i l s  o r  p a r t i c l e s )  t a r n i s h  and even roughen 

by r e a c t i n g  w i t h  gases o r  ad j acen t  s o l i d s .  A s  a r e s u l t ,  t h e  e f f e c t i v e  

thermal c o n d u c t i v i t y  and thermal d i f f u s i v i t y  of t h e  m a t e r i a l s  system change 

M a t e r i a l s  w i th  high p o r o s i t y  

as t h e  p r o p e r t i e s  change. Thus, t h e  behavior  of t h e  m a t e r i a l s  must  be 

known s o  t h a t  performance can be p r e d i c t e d  and improved under v a r i o u s  

s e r v i c e  cond i t ions .  

Changes i n  important p r o p e r t i e s  of t h e  i n s u l a t i o n  m a t e r i a l s  systems t h a t  

a f f e c t  thermal p r o p e r t i e s  and i n t e g r i t y  and hence, r e l i a b i l i t y  were s t u d i e d  

under a range of s e r v i c e  cond i t ions .  Most  o f  t h e  s tudy ,  however, w a s  con- 

c e n t r a t e d  on t h e  m o s t  s eve re  combinations of expected s e r v i c e  cond i t ions .  

Changes under l e s s  harsh cond i t ions  were g e n e r a l l y  n o t  apparent  and were 

r e l a t i v e l y  unimportant. Var i ab le s  t h a t  were considered m o s t  important 

were temperature ,  t ime,  loading p r e s s u r e ,  and environmental p r e s s u r e  

(vacuum). 

annealed and s t u d i e d  under s e l e c t e d  cond i t ions .  Specimens t h a t  were used 

f o r  measurement of thermal p r o p e r t i e s  were n o t  a p p r o p r i a t e  f o r  thermal 

s t a b i l i t y  s t u d i e s ,  because t e s t  specimens and parameters were not  designed 

f o r  t h e s e  s t u d i e s ,  and t e s t  parameters conld n o t  be c o n t r o l l e d  i n  t h e  

r e q u i r e d  manner. 

Small ,  e s s e n t i a l l y  i d e n t i c a l  specimens were s y s t e m a t i c a l l y  

Another t a s k  w a s  t o  determine the c o m p a t i b i l i t y  of t h e  i n s u l a t i o n  m a t e r i a l s  

systems wi th  p o t e n t i a l  advanced s t a t e - o f - t h e - a r t  t h r u s t  chamber m a t e r i a l s .  

R-7 54 8 



I n t e r a c t i o n  between i n s u l a t i o n  and chamber materials can be important  

from t h e  s t andpo in t  of t h e  e f f e c t  on t h r u s t  chamber performance. Sur- 

f a c e  r e a c t i o n  o r  s u r f a c e  contaminat ion of a r e f r a c t o r y  metal t h r u s t  

chamber could impair i t s  s t r e n g t h ,  d u c t i l i t y ,  and thermal  f a t i g u e  pro- 

p e r t i e s .  Re f rac to ry  meta ls  a r e  ve ry  s e n s i t i v e  t o  impur i t i e s .  An in-  

c r e a s e  o f  on ly  a few ppm of oxygen, f o r  example, can embr i t t l e  molybdenum. 

For  t h i s  reason ,  i n t e r a c t i o n  and i n t e r d i f f u s i o n  between t h e  r e f r a c t o r y  

metal  chamber and t h e  i n s u l a t i o n  m a t e r i a l s  should  be prevented by a 

d i f f u s i o n  b a r r i e r .  

Su r face  e f f e c t s  on supe ra l loys ,  such as Haynes 25, would be  l e s s  d e t r i -  

mental t o  performaiice of t h e  t h r u s t  chamber. A s u r f a c e  r e a c t i o n  on a 

g r a p h i t e  o r  carbon t h r u s t  chamber would n o t  s i g n i f i c a n t l y  impair perform- 

ance.  These materials a r e  less  s e n s i t i v e  t o  s u r f a c e  f laws  than  r e f r a c -  

t o ry  metals .  Moreover, molten e u t e c t i c  compositions a r e  n o t  l i k e l y  t o  

form. The lowest  mel t ing  e u t e c t i c  temperature  i n  t h e  molybdenum-carbon 

system i s  4000 F ,  and i n  t h e  tantalum-carbon system it i s  5750 F. Many 

combinations of r e f r a c t o r y  m a t e r i a l s  were t e s t e d  f o r  c o m p a t i b i l i t y  du r ing  

a previous phase of t h e  program t o  f i n d  a m a t e r i a l  t h a t  would form a good 

d i f f u s i o n  b a r r i e r  f o r  any given combination of chamber and i n s u l a t i o n  

ma te r i a l .  CornIjatibil i ty s t u d i e s  t h i s  year focused on two new t h r u s t  cham- 

be r  m a t e r i a l s ,  IIaynes 25 and a columbium a l l o y  B-66, and on a more d e t a i l e d  

eva lua t ion  o€  r e f r a c t o r y  meta ls .  

Compat ib i l i ty ,  f r o m  t h e  s t andpo in t  of i n s u l a t i o n  m a t e r i a l ,  i s  minor. 

Even a r e a c t i o n  t h a t  would d e s t r o y  t h e  inne r  l a y e r  of i n s u l a t i v e  m a t e r i a l  

would n o t  impair t h e  e f f e c t i v e  thermal conduc t iv i ty  o r  i n t e g r i t y  of t h e  

system, A l t e r a t i o n  o r  even d e s t r u c t i o n  of one l a y e r  o u t  of many layers 

o f  a mi i l t i l ayer  system would have a p r o p o r t i o n a t e l y  s m a l l  e f f e c t  on over- 

a l l  p r o p e r t i e s .  The same reasoning  would be  t r u e  of  a r e f r a c t o r y  ceramic 

ma t r ix  in su la t io t i  system, such as low-densi t y  z i r c o n i a .  One p o s s i b l e  

disadvantage of t h e  i n s u l a t i o n  system, should it r e a c t  w i th  t h e  t h r u s t  

c l ~ ~ m b e r ,  would be  d i f f i c u l t y  i n  removal a f t e r  use.  B u t  even t h i s  prospec t  

seems unimportant f o r  most a p p l i c a t i o n s .  
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Compa t ib i l i t y  s t u d i e s  were conducted w i t h  B-66 (a columbium a l loy) ,  Ta-lOW, 

Mo-1/2 T i ,  and Haynes 25 vs  molybdenum and tantalum f o i l s ,  and wi th  Haynes 

25 vs s i l i c a  f a b r i c ,  Compa t ib i l i t y  w a s  a l s o  eva lua ted  between molybdenum 

f o i l  and a z i r con ia - tungs t en  system. Molybdenum f o i l  c o n t a i n e r s  were used 

t o  house t h e  z i r con ia - tungs t en  m a t e r i a l  during measurement of thermal 

p r o p e r t i e s .  

PROCEDURE 

Thermal S t a b i l i t y  S t u d i e s  

Tes t  specimens s imula t ing  m u l t i l a y e r  i n s u l a t i o n  systems resembled s m a l l  

sandwiches. Each specimen c o n s i s t e d  of t h r e e  l a y e r s  of t h e  a p p r o p r i a t e  

Pabr i c ,  each sepa ra t ed  by a t  l e a s t  one l a y e r  of r e f r a c t o r y  metal  f o i l ,  

and p r o t e c t e d  on t o p  and bot-bom by a t  l e a s t  one l a y e r  of t h e  same r e f r a c -  

tory metal  f o i l  (Fig.  43). 

s h e e t s  were used and t h e s e  were p r o t e c t e d  from t h e  tungs t en  weights  on 

t o p  and from t h e  tungs t en  base p l a t e . b y  one s h e e t  of molybdenum f o i l .  

When tantalum f o i l  w a s  used, a t  l e a s t  two 

A l l  s h e e t s  were 1-inch square.  

batches t h a t  were used i n  measuring thermal p r o p e r t i e s ,  except as noted 

below. Four s t a c k s ,  o r  sandwiches, of each i n s u l a t i o n  system were used 

in each t e s t ,  and each of t h r e e  s t a c k s  were weighted t o  a loading pres- 

s u r e  of approximately 0 ,  1/2, and 1 p s i .  

loaded a t  1/2 p s i ,  contained f a b r i c  from a d i € f e r e n t  ba t ch  of m a t e r i a l .  

Rigid 1-inch square tungs t en  p l a t e s  were placed on t o p  t o  provide t h e  

a p p r o p r i a t e  loading p r e s s u r e  and t o  uniformly d i s t r i b u t e  t h e  load. Each 

tungsten p l a t e  weighed 13 gms, s o  t h a t  loading of t h e  1/2- and l - p s i -  

loaded specimens was w i t h i n  0.035 p s i  of t h e  c o r r e c t  p re s su re  t o  y i e l d  

1/2 o r  1 p s i .  One p l a t e  w a s  used on t h e  "zero" psi-loaded specimen t o  

hold t h e  f o i l s  i n  place.  This  r e s u l t e d  i n  a n  a c t u a l  loading p res su re  of 

0.035 p s i .  

M a t e r i a l s  were obtained from t h e  same 

The f o u r t h  s t a c k ,  which w a s  
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TUNGSTEN WE I GHT 

R I G I D  TUNGSTEN PLATE 

METAL F O I L  

I N S U L A T I N G  PAPER OR F A B R I C  

HETAL F O I L  

I N S U L A T I N G  PAPER OR F A B R I C  

METAL F O I L  

I N S U L A T I N G  PAPER OR F A B R I C  

METAL FOIL 

LARGE TUNGSTEN 
BASE PLATE 

Fi gure 43. lful t i layer I n s u l a  t i on Spe c i i n  e i ~  
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The t h i c k n e s s  of each f a b r i c  w a s  de t e rn ined  by measuring t h e  t o t a l  t h i ck -  

ness  of t h e  s t a c k ,  s u b t r a c t i n g  t h e  th i ckness  of t h e  f o i l s ,  and d i v i d i n g  

by t h r e e ,  which w a s  t h e  number of p i eces  o f  f a b r i c .  Measurements were 

made o p t i c a l l y  w i t h  a cathetometer  s o  t h a t  handl ing of t h e  specimen w a s  

unnecessary.  This  procedure was mandatory because annealed specimens, 

e s p e c i a l l y  carbon f ab r i c / t an ta lum f o i l  specimens, could n o t  be handled 

without  t h e i r  breaking a p a r t ,  

and e f f i c i e n t .  

o r  r ep roduc ib ly  measured because of t h e  n a t u r e  of s m a l l  p i eces  of loosely-  

woven f a b r i c s .  

The o p t i c a l  measurements were a c c u r a t e  

The l e n g t h  and width of f a b r i c s  could not  be a c c u r a t e l y  

Specimens were v i s u a l l y  observed wi th  t h e  unaided eye and with a 50-power 

stereomicroscope. 

high magn i f i ca t ion .  

p r e s s i n g  them with t h e  a p p r o p r i a t e  loading p r e s s u r e  and vacuum i n f i l t r a t i n g  

them wi th  a low-viscosi ty ,  c o l d - s e t t i n g  epoxy. Specimens were then  r e -  

mounted perpendicular  t o  t h e  plane of  t h e  f a b r i c s  and po l i shed  by s tand-  

a r d  ceramographic procedures,  

C e r t a i n  specimens were a l s o  observed mic roscop ica l ly  a t  

F a b r i c s  were mounted f o r  microscopic s tudy  by com- 

Compa t ib i l i t y  S t u d i e s  

Compa t ib i l i t y  specimens of t h e  r e f r a c t o r y  metal  a1 loys were 1/2-inch squares  

of as-received s h e e t  s tock .  

40 m i l s  f o r  t h e  Ta-1OW a l loy ,  and 30 m i l s  f o r  t h e  Mo-1/2 T i  a l l o y .  

25 specimens were 1/2-inch cubes c u t  from 1/2-inch s tock.  

s u r f a c e  was used. Tantalum and molybdenum f o i l s  were obtained from the  same 

s t o c k  used i n  t h e  e n t i r e  program. 

and r i n s e d  i n  e thano l .  A loading p r e s s u r e  of 1/2 p s i  was always used. 

Annealed specimens were mounted perpendicular  t o  the plane of viewing 

and p o l i s h e d  by s t anda rd  metal lographic  procedures.  

metals  were observed b e f o r e  and a f t e r  e tching.  Microhardness was obtained 

w i t h  a Miiiiload (Ze i t z )  microhardness t e s t e r .  

Thickness w a s  65 m i l s  f o r  t h e  B-66 a l l o y ,  

Haynes 

The as-received 

A l l  specimens were cleaned i n  acetone 

I n t e r f a c e s  between 

Loading weight w a s  25 grams. 
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Since  tantalum f o i l  bonded t o  a l l  metals  a t  3500 F ,  i t  w a s  p r o t e c t e d  by 

a second s h e e t  of tantalum f o i l  and a s h e e t  OP molybdenum f o i l .  The molyb- 

denum f o i l  d i d  n o t  r e a c t  w i th  t h e  tungs t en  weights  on t o p  of t h e  tungs t en  

base p l a t e ,  

CONDITIONS 

Specimens were heated i n  a tungs t en ,  r e s i s t ance -hea ted  vacuum Furnace. 

Heating and coo l ing  cyc le s  were n o t  considered i n  determining t o t a l  time 

a t  temperature  because t h e y  were r ap id .  

upper temperatures was about  50 F/min. 
-4 was g e n e r a l l y  2 x 10 t o r r  dur ing hea t ing  due t o  fu rnace  wall and spec i -  

men outgassing.  P r e s s u r e  decreased t o  about 5 x t o r r  a t  t e s t  

temperature.  

Heating and coo l ing  r a t e  a t  

P r e s s u r e  i n  t h e  fu rnace  chamber 

T e s t i n g  parameters were s e l e c t e d  based on t h e  most s eve re  cond i t ions  

expected f o r  b u r i e d  r o c k e t  engine chambers du r ing  s p a c e c r a f t  ope ra t ion .  

Tes t ing  temperature w a s  2000 F f o r  t h e  s i l i c a  fabric/molybdenum f o i l  

systein and 3500 F f o r  t h e  carbon f ab r i c / t an ta lum and z i r con ia - tungs t en  

systems. Durat ion w a s  1 hour o r  l e s s .  Compa t ib i l i t y  and thermal sta- 

b i l i t y  specimens were annealed s imultaneously when a p p r o p r i a t e .  

RESULTS AM) DISCUSSION 

Thermal S t a b i l i t y  

- S i l i c a  Fabric/Molybdenum P o i 1  System. 

s i g n i f i c a n t l y  by annea l ing  a t  2000 F ,  Appearance, f l e x i b i l i t y ,  and s t r e n g t h  

of t h e  f a b r i c  d i d  n o t  p e r c e p t i b l y  change. 

w i t h  t h e  c o n t a c t i n g  molybdenum f o i l  enough t o  t a r n i s h  l o c a l l y .  

shr inkage t h a t  occurred w i t h  loading a t  h igh  temperature  was permanent. 

S i l i c a  f a b r i c  was n o t  a f f e c t e d  

The f a b r i c  only r e a c t e d  s l i g h l y  

The s l i g h t  

React ion of t h e  s i l i c a  f i b e r s  w i t h  t h e  f o i l  was random; it d i d  n o t  occur 

i n  a l l  specimens nor  a l l  over a s i n g l e  specimen. Moreover, t h e  t a r n i s h  
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w a s  only v i s i b l e  where high s p o t s  of t h e  f a b r i c  touched t h e  metal .  Con- 

v e r s e l y ,  s i l i c a  paper t e s t e d  l as t  yea r  s i n t e r e d  s l i g h t l y ,  never had any 

apprec iab le  s t r e n g t h ,  and s l i g h t l y  t a r n i s h e d  t h e  e n t i r e  s u r f a c e  of t h e  

molybdenum f o i l  due t o  t h e  higher  c o n t a c t  a r e a  of t h e  paper.  

Shrinkage of t h e  s i l i c a  f a b r i c  i s  shown i n  F i g .  44. Shrinkage w a s  5 per- 

cen t  w i th  a 1/2-psi loading p r e s s u r e ,  and 12 pe rcen t  with a 1-psi  loading 

p res su re .  

t h e  s c a t t e r  was too l a r g e .  The s c a t t e r  was due t o  i n s u f f i c i e n t  loading 

p res su re  t o  keep t h e  molybdenum f o i l s  f l a t .  

i n  F ig .  44 with t h e  same s lope  as t h e  1/2-psi and 1-psi  curves .  

Zero-psi daLa € o r  annealed specimens were no t  p l o t t e d  because 

An e s t ima ted  curve w a s  drawn 

A c r o s s  s e c t i o n  of t h e  s i l i c a  f a b r i c  under high magn i f i ca t ion  i s  given 

i n  F ig .  4 5 ,  
€ o r  1 h o u r  i n  vacuum a t  2000 F. No change was observed as a r e s u l t  of 

anneal ing.  

shape I 

The loading p r e s s u r e  w a s  1/2 p s i ,  and t h e  specimen w a s  annealed 

Tine s m a l l  f i b e r s  show no s i g n  o€ s i n t e r i n g  o r  of changing 

Data f o r  s i l i c a  paper are  a l so  p resen ted  f o r  comparison. 

f o r  t h e  paper compared t o  t h e  f a b r i c  i s  ev iden t .  

l i s t e d  below: 

Higher shr inkage 

Pe rcen t  shr inkage i s  

Shrinkage A i t e r  1 H o u r ,  
S i l i c a  F a b r i c  pe rcen t  

112 psi 5 
1 p s i  12  

S i l i c a  Paper 

112 p s i  

1 p s i  

33 
32 

Shrinkage f o r  a f a b r i c  from a d i - f f e ren t  l o t  of m a t e r i a l  w a s  9 pe rcen t  

compared t o  5 pe rcen t  f o r  t h e  r e fe rence  l o t .  Loading p res su re  was 1/2 p s i .  

11-7 54 8 93 



O , A , o  DATA WERE 
INTERPOLATED FROM DATA 0 0 P S I  LOADING PRESSURE 
THAT WERE TAKEN AT 0, A 1/2 P S I  LOADING PRESSURE 
1/2, AND 5 HOURS, RESPECTIVELY a PRESSURE 

0 1 /2 1 0  1 /2 1 

T I M E ,  HOURS 

Figure  44. E f f e c t  of  Time and Loading Pressure  on S i l i c a  F a b r i c  
Annealed (Vacuum a t  2000 F) 
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50X 

150x 

Figure 45. Cross-Section of Silica Fabric Loaded Under 1/2 psi 
Pressure and Annealed in Vacuum f o r  1 Hour at 2000 F 
(50X and 150X Magnification) 
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The d i f f e r e n c e  is  s i g n i f i c a n t ,  i n d i c a t i n g  t h a t  some d i f f e r e n c e s  can b e  

expected between d i f f e r e n t  l o t s  of m a t e r i a l ,  b u t  9 pe rcen t  shr inkage i s  

s t i l l  no t  excessive.  

The e f f e c t  of loading p res su re  on t h e  th i ckness  of s i l i c a  Pabr i c  a t  room 

temperature i s  shown i n  Fig.  46 .  
S i l i c a  f a b r i c  w a s  compressed 18 pe rcen t  by a load  of 1 p s i ,  whereas t h e  

paper w a s  compressed 27 pe rcen t .  

Data f o r  s i l i c a  paper a r e  included. 

Weight-loss d a t a  f o r  s i l i c a  f a b r i c  were obtained by hea t ing  specimens i n  

bo th  a i r  and vacuum Furnaces. The purpose of measuring weight l o s s  i n  

a i r  w a s  t o  determine whether v o l a t i l e s  could be d r i v e n  o f €  a t  l o w  tem- 

p e r a t u r e s ,  and whether t h e  f a b r i c  would r e a d i l y  re-absorb t h e  gases.  

Weight l o s s  o €  s i l i c a  f a b r i c  from both l o t s  o€  m a t e r i a l  a f t e r  anneal ing 

1 hour a t  2000 F i n  a vacuum w a s  2.4 and 3.1 pe rcen t ,  Weight-loss d a t a  

ob ta ined  by hea t ing  i n  a i r  f o r  m a t e r i a l  i r o m  bo th  l o t s  were 2.5 pe rcen t  

a t  1500 F and 3.3 pe rcen t  a t  2000 F. Weight ga in  a f t e r  exposure t o  air  

f o r  e i g h t  days w a s  0 .1  pe rcen t .  

I n i t i a l l y  t h e s e  specimens were heated t o  500 F ,  where the  weight l o s s  w a s  

2.5 percent .  A f t e r  exposure t o  ambient cond i t ions ,  t h e s e  specimens r e -  

gained 2.5 pe rcen t  i n  weight.  Apparently,  t h e  e x t e n t  of gas abso rp t ion  

on unannealed s i l i c a  f a b r i c  depends on ambient cond i t ions ,  p a r t i c u l a r l y  

humi d i  t y  . 

Carbon Fabric/Tantalum F o i l  System. 

f o i l  were p rev ious ly  found t o  be a v e r y  good i n s u l a t i o n  m a t e r i a l s  system 

(Ref E f f e c t i v e  thermal c o n d u c t i v i t y  a t  e l eva ted  temperatures was 

as l o w  o r  lower than  a l l  o t h e r  m a t e r i a l  systems, and it w a s  an o rde r  of  

magnitude lower t h a n  t h a t  o f  t h e  low-density z i r c o n i a ,  t h e  l a t t e r  having 

t h e  lowest thermal conduc t iv i ty  of a l l  pure m a t e r i a l s .  Moreover, carbon 

M u l t i l a y e r s  of carbon f ab r i c / t an ta lum 

2 ) . 
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LOADING PRESSURE, P S I  

Figure  46. E f f e c t  of Loading Pressu re  on "As-Received" 
S i l i c a  F a b r i c  and Paper 
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f a b r i c  d i d  no t  change s i g n i f i c a n t l y  during annea l ing  t o  4500 F ,  and t h e  

f l e x i b i l i t y  and s t r e n g t h  of t h e  f a b r i c  were n o t  a f f e c t e d  by environmental  

t e s t ing  . 

Measured weight l o s s  w a s  unexpectedly high,  b u t  t h i s  w a s  a p p a r e n t l y  due 

t o  l o s s  of t h e  con ta ine r  m a t e r i a l  t h a t  r e a c t e d  wi th  a d j a c e n t  metal sup- 

p o r t s .  The f a b r i c  weight-loss specimen w a s  wrapped i n  tantalum f o i l  which, 

as expected, ca rbur i zed  during annealing. The tantalum c a r b i d e  i n  t u r n  

welded t o  t h e  small t ungs t en  supports .  React ion w a s  s l i g h t ,  b a t  could 

have accounted f o r  cons ide rab le  e r r o r  i n  c a l c u l a t i n g  weight l o s s  of t h e  

carbon f a b r i c .  Although t h e  r a d i a t i o n  s h i e l d s  of t an ta lum f o i l  i n  t h e  

m u l t i l a y e r  system ca rbur i zed  r a p i d l y  du r ing  t e s t i n g  a t  3500 F ,  t h e  e f f ec -  

t i v e  thermal conduc t iv i ty  of t h e  system was no t  impaired. However, em- 

b r i t t l e m e n t  w a s  encountered. Embrittlement i s  not  n e c e s s a r i l y  harmful 

because t h e  carbon f a b r i c  p r o t e c t s  and holds  t h e  tantalum c a r b i d e  r a d i a -  

t i o n  s h i e l d s  i n  placz.  

no changes i n  t h e  m a t e r i a l s  were made i n  t h e  cont inued eva lua t ions  re-  

ported h e r e i n ,  

Since t h i s  system w a s  t h e  b e s t  one t e s t e d  (Ref. 2 ) ,  

Appearance and p r o p e r t i e s  of annealed carbon f ab r i c / t an ta lum f o i l  spec i -  

mens were t h e  same as p r e v i o u s l y  r e p o r t e d  (Ref. The carbon f a b r i c  

w a s  una f fec t ed  by hea t ing  o r  by c o n t a c t  w i th  tantalum; and t h e  tantalum 

f o i l  ca rbur i zed ,  becoming ve ry  b r i t t l e .  

2). 

The e f f e c t  of l oad ing  p r e s s u r e  and time on shr inkage of carbon f a b r i c /  

tantalum f o i l  m u l t i l a y e r  systems a t  3500 F i s  shown i n  F i g .  4 7 .  The 

d a t a  inc lude  r e s u l t s  of a l l  t e s t s  r u n  a t  3500 F. The amount of shr inkage 

seems t o  be independent O P  loading p res su re .  This may be due t o  t h e  in -  

s e n s i t i v i t y  of t h e  carbon f a b r i c  t o  low loading p r e s s u r e s  and t o  t h e  f a c t  

t h a t  much of t h e  apparent  shr inkage i s  due t o  t h e  deformation of t h e  tan- 

talum f o i l  by t h e  f a b r i c  which r e s u l t s  i n  more e f f i c i e n t  s t a c k i n g  of ad- 

j a c e n t  l a y e r s  of t h e  carbon f a b r i c .  I n  o t h e r  words, t h e  f o i l ,  as a r e s u l t  

4 
f 

98 R-7548 



1/8 PSI 
I 1- 1/4 PSI -; 112 PSI 

PS 

0.5 1 .o 
TIME, HOURS 
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of Time and Loading Pressure a t  3500 F 
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of h e a t  and p res su re ,  coniorms t o  t h e  t e x t u r e  of t h e  carbon f a b r i c .  Be- 

cause  t h e  f o i l  i s  no longer  a f l a t  surface,  it a l lows  a d j a c e n t  layers of 

i a b r i c  t o  pack more e f f i c i e n t l y .  The f o i l  deformation is permanent. 

Drawing a meaningful curve  through t h e  d a t a  obta ined  a t  a n e g l i g i b l e  load- 

i n g  p res su re  (0.03 p s i )  is  not  p o s s i b l e  because of t h e  l a r g e  s c a t t e r  of 

da t a .  The s c a t t e r  is  due t o  inadequate  loading  p r e s s u r e  t o  s t r a i g h t e n  

o u t  t h e  bowed s h e e t s  of t an ta lum f o i l .  The dashed curve  r e p r e s e n t i n g  

a loading p r e s s u r e  of  0.03 p s i  w a s  drawn p a r a l l e l  t o  t h e  o t h e r  curves  and 

through t h e  in t e rceDt  of 30 m i l s  on t h e  o r d i n a t e .  T h i r t y  m i l s  i s  a n  

accu ra t e  measurement of t h e  th i ckness  of s i n g l e  s h e e t  of carbon f a b r i c  

under 0 p s i  loading  p res su re .  

Shrinkage d a t a  from m u l t i l a y e r  specimens i n  which t h e  carbon f a b r i c  w a s  

obtained f rom d i f f e r e n t  l o t s  of material from t h e  vendor were a l s o  ob- 

t a ined .  

and a t e s t  d u r a t i o n  of 1 hour. The d i l f e r e n c e  i n  shr inkage  was nominal 

The loading  p r e s s u r e  was 1/2 p s i  a t  a temperature  o i  3500 F ,  

and wi th in  t h e  range of experimental  e r r o r .  

Weight-loss o f  t h e  carbon f a b r i c  w a s  5.1 pe rcen t .  Th i s  f i g u r e  i s  con- 

s ide red  more a c c u r a t e  t h a t  t h a t  r epor t ed  p rev ious ly  (Re€. 2 ). 

The ef I e c t  of loading  p res su re  a t  r o o m  temperature  on as - rece ived  carbon 

I 'ahr ic  is shown i n  P i g ,  48. This  in format ion  is  impor tan t  f o r  des igning  

i n s u l a t i o n  systems f o r  a s p e c i f i c  u s e .  

ir conia-Tungs t e n  System. - 

Saml)ling. Thermal s t a b i l i t y  s t u d i e s  on t h e  z i r con ia - tungs t en  system 

(other than t h o s e  I'erformed i n  t h e  screening  t e s t s  desc r ibed  i n  Appendix B )  

were performed o n  samples taken  from t h e  l a r g e  thermal  conduc t iv i ty  spec i -  

mens. Samples o f  about  80 grams of t h e  composite were removed from t h e  

h 
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h o t t e s t  s e c t i o n s  of t h e  thermal c o n d u c t i v i t y  specimen i n  t h e  t o p ,  middle, 

and bottom l a y e r s .  10 pe rcen t  

W composite w a s  3000 F ,  and f o r  t h e  98 pe rcen t  Zr02-2 pe rcen t  W composite, 

w a s  3780 I?. 

Maximum temperature f o r  t h e  90 pe rcen t  Z r O  
2- 

s eg rega t ion .  Segregat ion of t ungs t en  i n  t h e  z i r c o n i a  ma t r ix  i n  t h e  

90-10 mixture was ev iden t  by v i s u a l  examination. 

t o  some e x t e n t  i n  each sample, t o p ,  middle, and bottom, b d t  it was m o s t  

pronounced between t h e  t o p  and bottom samples. The dark tungs t en  powder 

s i f t e d  through t h e  coa r se ,  b e i g e  z i r c o n i a  ma t r ix ,  making t h e  bottom sam-  

p l e  much da rke r  and t h e  t o p  sample l i g h t e r  t h a n  t h e y  were i n i t i a l l y .  

Seg rega t ion  w a s  observed 

A microscopic examination of  po l i shed  samples t h a t  were i n f i l t r a t e d  wi th  

epoxy was made (Fig. 49 and 50). 
m a t e r i a l  a lone  and Fig. 49b shows t h e  10 weight pe rcen t  t u n g s t e n  sample 

be fo re  t e s t i n g .  Samples taken f r o m  t h e  thermal conduc t iv i ty  specimen 

a f t e r  t e s t i n g  a r e  shown i n  Fig.  50. Very l i t t l e  t ungs t en  powder i s  v i s i b l e  

i n  t h e  t o p  sample except where t h e  tungs t en  is  t rapped i n s i d e  hollow 

microspheres.  A medium amount of d i spe r sed  tungs t en  i s  v i s i b l e  i n  t h e  

middle sample, whereas excess ive  tungs t en  powder i s  v i s i b l e  i n  t h e  bottom 

sample, Tungsten d i s t r i b u t i o n  i n  t h e  bottom sample w a s  not uniform and, 

whereas t h e  photomicrograph i s  of a h igh ly  concen t r a t ed  a r e a  of t ungs t en  

powder, such a high concen t r a t ion  w a s  no t  uncommon. Caution m u s t  be used 

i n  e v a l u a t i o n  of t h e  r e s u l t s  of t h e  microscopic examination because of 

F igu re  49a shows t h e  z i r c o n i a  i n s u l a t i o n  

two f a c t o r s .  F i r s t ,  each sample w a s  s e l e c t e d  randomly; t h e r e f o r e ,  each 

mount r e p r e s e n t s  m a t e r i a l  from on ly  one s m a l l  a r e a  of a l a r g e  non-homogeneous 

s e c t i o n ,  Secondly, t h e  mounting compound could have d i spe r sed ,  o r  agglom- 

e r a t e d ,  t h e  f i n e  tungs t en  powder during impregnation. 

Segregat ion o f  t ungs t en  powder i n  t h e  98-2 mixture was v i s u a l l y  masked 

because the  z i r c o n i a  phase tu rned  dark grey du r ing  t e s t i n g .  The dark 

c o l o r  of  t h e  z i r c o n i a  can  be explained by an ion -de f i c i en t  s t r u c t u r e  t h a t  

r e s u l t s  f r o m  annea l ing  z i r c o n i a  i n  a vacuum ( o r  a reducing environment) 

above 3000 F. This  m a t e r i a l  w a s  no t  mounted and examined under t h e  microscope. 

a 
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(b) 
Figure 49. Zirconia Insulation Material in the As-Received Condition 

With (a) 0 Percent and (b) 10 Percent by Weight Tungsten 
Powder. (50X Magnification) 
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Segrega t ion  w a s  measured q u a n t i t a t i v e l y  by s e p a r a t i n g  t h e  tungs t en  powder 

from t h e  z i r c o n i a  ma t r ix  and weighing it. The tungs t en  powder w a s  removed 

by v igo rous ly  shaking (on a n  automatic machine) t h e  composite through a 

200 mesh s i eve .  R e s u l t s  were: 

S e c t i o n  of Thermal Weight P e r c e n t  Through 
Mixture P r o p e r t y  Specimen - A 200-mesh S ieve  

2 
90 pe rcen t  Z r O  

10 pe rcen t  W I 
98 pe rcen t  Z r O  2 I 2 pe rcen t  W 

TOP 
M i  dd l  e 

Bottom 

TOP 
Middle 

Bottoii l  

10.1 average 9.9 
7.0 I 

12.6 1 

Whether m o s t  o f  t h e  s e g r e g a t i o n  occurred b e f o r e  o r  during t e s t i n g  could 

no t  be determined. Although p recau t ions  were t aken ,  t h e  heavies ,  f i n e r ,  

t ungs t en  powder no doubt s eg rega ted  t o  some degree when t h e  mixture w a s  

poured i n t o  t h e  thermal p rope r ty  t e s t  c o n t a i n e r .  F u r t h e r  s eg rega t ion  

could have occurred du r ing  t e s t i n g  due t o  t h e  v i b r a t i o n  caused by t h e  

vacuum pump. 

Bulk d e n s i t y  of samples taken from t h e  top ,  middle, and bottom s e c t i o n s  

of  t h e  90-10 mixture specimen a l s o  i n d i c a t e d  t h e  degree of s eg rega t ion  

of t h e  two components. Exac t ly  10 cc  of composite m a t e r i a l  w a s  poured 

i n t o  a graduated c y l i n d e r  and weighed. The graduated c y l i n d e r  w a s  p l aced  

on a v i b r a t i o n  t a b l e  t o  o b t a i n  a more r ep roduc ib le  measurement of volume. 

The resu l t s  l i s t e d  below a l s o  i n d i c a t e  t h a t  t ungs t en  c o n c e n t r a t i o n  de- 

c reased  w i t h  he igh t  i n  t h e  thermal p rope r ty  specimen. 

S e c t i o n  of Thermal As-Poured Dens i ty  Vib ra t ed  Densi ty  
P r o p e r t y  Specimen pm cc pm c c  

TOP 

Middle 

B o t t o m  

2.67 

2.65 

2.67 

2.88 

2.99 

3.03 
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Chemical Reac t ions .  S igns  of chemical r e a c t i o n  between t h e  tungs t en  

and z i r c o n i a  were n o t  apparent .  Tungsten p a r t i c l e s  did n o t  adhere  t o  t h e  

z i r c o n i a  p a r t i c l e s ,  and no observable  phys i ca l  changes i n  e i t h e r  material 

were apparent .  

S i n t e r i n g .  No s i n t e r i n g  of e i t h e r  z i r c o n i a  o r  t ungs t en  w a s  observed 

by microscopic  examination. However, some p a r t i c l e s  i n  t h e  h o t t e s t  sec-  

t i o n s  of t h e  thermal  c o n d u c t i v i t y  specimens bonded t o g e t h e r  v e r y  s l i g h t l y .  

Lumps o €  aggrega te  about 1/2 inch  a c r o s s  were found a f t e r  annea l ing  above 

3000 F ,  b u t  t h e s e  agglomerates had a c rush ing  s t r e n g t h  e s t ima ted  a t  l e s s  

t han  1 p s i .  

Compa t ib i l i t y  

u n e s  25 Alloy. 

molybdenum f o i l ,  s i l i c a  f a b r i c ,  and s i l i c a  paper  a t  2000 F € o r  1 hour i n  

a vacuum. Haynes 25 d i d  n o t  r e a c t  o r  

bond t o  e i t h e r  molybdenum o r  t an ta lum f o i l ,  w i t h  one except ion.  I t  d i d  

bond t o  molybdenum i n  one p r o p o r t i o n a l l y  smzl l  a r e a ,  b u t  t h e  remaining 

a r e a  was una i f ec t ed .  The l o c a l  bonding encountered i s  n o t  cons idered  

t y p i c a l  because it w a s  most l i k e l y  due t o  an unusual cond i t ion ,  such as 

an  inc lus ion  o r  impur i ty  on one of  t h e  s u r f a c e s .  

Haynes 25 a l l o y  w a s  t e s t e d  i n  c o n t a c t  w i t h  tan ta lum f o i l ,  

The loading p res su re  w a s  113. p s i .  

The s i l i c a  paper t h a t  contac ted  t h e  Haynes 25 a l l o y  tu rned  d u l l  green- 

yellow and t h e  a l l o y  s u r f a c e  t a rn i shed .  

t hey  d i d  no t  adhere t o  each o the r .  

c a s e  o r  s i l i c a  f a b r i c  i n  c o n t a c t  wi th  Haynes 25 a l l o y  b u t  c o n t a c t  a r e a  

was l imi t ed  t o  t h e  high s p o t s  of t h e  f a b r i c  weave. Therefore ,  r e a c t i o n  

area between t h e  € a b r i c  and t h e  metal  w a s  p r o p o r t i o n a t e l y  smal le r .  

c o m p a t i b i l i t y  problem does n o t  e x i s t  i n  t h i s  system as long as t h e  s i l i c a  

i s  sepa ra t ed  irorn t h e  Haynes 25 chamber by  a l a y e r  o €  molybdenum f o i l .  

Although t h e s e  m a t e r i a l s  r e a c t e d ,  

The same r e a c t i o n  w a s  observed i-n t h e  

A 
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Ref rac to ry  Metals.  

alloys: 

t h e  i n s u l a t i o n  systems m a t e r i a l s  tantalum and molybdenum f o i l s .  

of each combination of chamber and i n s u l a t i o n  metals  were weighted w i t h  

a 1/2 p s i  loading p res su re  and annealed a t  3500 F f o r  1 hour i n  a vacuum. 

Compa t ib i l i t y  specimens were p o t e n t i a l  t h r u s t  chamber 

B-66 (a columbium-based a l l o y ) ,  Mo-1/2 T i ,  and Ta-1OW a g a i n s t  

Couples 

A l l  combinations bonded t o g e t h e r  as a r e s u l t  of d i f f u s i o n  and could n o t  

b e  sepa ra t ed ,  Microscopic obse rva t ion ,  however, showed t h a t  bonding w a s  

no t  uniform and was i n t e r m i t t e n t  along t h e  i n t e r f a c e  on a l l  specimens. 

The photomicrographs i n  F i g ,  ? la ,  b ,  and c show t h e  e x t e n t  of bonding 

between each p a i r  of m a t e r i a l s .  

Mircohardness measurements were made a c r o s s  t h e  i n t e r f a c e  of each p a i r  of 

m a t e r i a l s  t o  determine t h e  depth of t h e  t h r u s t  chamber a l l o y  t h a t  w a s  

a f f e c t e d .  The r e s u l t s  a r e  given i n  F ig .  52 through 54. 

A s  shown, i n t e r d i f f u s i o n  between B-66 and tantalum, and between Mo-1/2 T i  

and molybdenum r e s u l t e d  i n  a s i g n i f i c a n t  change i n  hardness of t h e  base 

a l l o y s .  The depth of t h e  a f f e c t e d  a r e a  w a s  approximately 3 m i l s .  It seems 

t h a t  a d i f f u s i o n  b a r r i e r ,  such as a t h i n  l a y e r  of t ungs t en ,  should be 

in t e rposed  between t h e  metals  t o  a l l e v i a t e  t h e  diffusion.problem. 

R-7 54 8 
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APPLICATIONS ANALYSIS 

The c a p a b i l i t y  of a s p a c e c r a f t  t o  accept  hea t  l o a d s  i s  s t r i ( * t l y  l i m i t e d ,  

because a v a i l a b l e  e l e c  t r o n i c  equipment demands an e sseii t i  a l l y  ('011s t a n  L 

temperature environment. Thus a l l  excess  hea t  mus t  be r e j e c t e d  t o  space 

by r a d i a t i o n .  The l i m i t i n g  f a c t o r  may be the  maximum acceptable  licit t 

f l u x  or  t h e  t o t a l  hea t  l o a d  per f i r i n g ,  depending 011 the Iieiit s to rage  

c a p a b i l i t y  of t he  s p a c e c r a f t .  I n  g e n e r a l ,  t h e r e  i s  a trade-off hctweeri 

t he  weight of engine i n s u l a t i o n  needed t o  l i m i t  the Ilea t triirisnii t t ed  to 

the  s p a c e c r a f t  by the buried engines and the weight o f  space r a d i a t o t * s  

necessary t o  dispose of a d d i t i o n a l  hea t  loads.  The trade-off f a c t o r s  

depend o n  t h e  s p e c i f i c  s p a c e c r a f t  design and mission,  s o  such ove ra l l  

op t imiza t ion  c a l c u l a t i o n s  were not  poss ib l e  i n  t h i s  program. However a n  

a n a l y t i c a l  model f o r  c a l c u l a t i n g  the  hea t  f l u x  from engine t o  Spacec ra f t  

during f i r i n g  and du r ing  t h e  hea t  soalrbaclr pe r iod  fol lowing the  f i r i n g  

was developed, Th i s  information can, i n  t u r n ,  be used i n  system optimi- 

z a t i o n  c a l c u l a t i o n s .  The fol lowing paragraphs d i s c u s s  t h e  a n a l y t i c a l  

model, and give examples of i t s  a p p l i c a t i o n  t o  i n s u l a t i o n  system tlcsign 

f o r  t y p i c a l  s p a c e c r a f t  engines.  

I W  TRANSFFB I N  AN INSULATED SPACE ENGINE: 

G m L  DESIGN CRITERIA 

Evaluat ion of hea t  loads as a f u n c t i o n  of i n s u l a t i o n  p r o p e r t i e s  and thiclr- 

ness  should be conducted wi th  a s i m p l i f i e d  model OP t h e  hea t  t r a n s f e r  t o  

permit e v a l u a t i o n  of a l a r g e  number of designs.  

can 'subsequent ly  be a m l y z e d  i n  more d e t a i l .  

computer t i m e  spen t  t o  o b t a i n  t h e  necessary in fo rma t ion  can thus  bc 

minimize de 

S e l e c t e d  o p t i o n a l  design:; 

The t o t a l  e f f o r t  and t h e  

The t r a n s i e n t  behavior  of a multi-component system w i t h  temperature- 

dependent thermal  p r o p e r t i e s  cannot be t r e a t e d  by c losed  analyLica1 mteho 

A thermal  ana lyze r  program of t h e  type  desc r ibed  i n  Ref. 5 ,  which is  known 

by t h e  acronym TAP 11, was used f o r  t h e  c a l c u l a t i o n s .  

regimes, f i r i n g  and soakback, must be analyzed f o r  each engine -tud e,.ci! 

' h o  heat  trc~nsI'f~i' 
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f i r i n g  cyc le ,  During f i r i n g  t h e  chamber w a l l s  r ece ive  hea t  from t h e  

combustion gases; t h e  chamber w a l l  temperature  inc reases ,  and hea t  i s  

conducted i n t o  the i n s u l a t i o n .  During the soakback pe r iod  which fo l lows  

t h e  f i r i n g ,  no a d d i t i o n a l  hea t  i s  rece ived  by t h e  system, b u t  t h e  hea t  

s t o r e d  i n  t h e  engine w a l l s  and i n  t h e  i n s u l a t i o n  i s  l o s t  by r a d i a t i o n  from 

nozz le  w a l l s  t o  space  and from t h e  s teel  s h e l l  enc los ing  t h e  i n s u l a t i o n  t o  

t h e  s p a c e c r a f t  w a l l s ,  whi le  tempera tures  tend  t o  equa l i ze  throughout  t h e  

system. 

THEBMAL PROPEETIES OF INSULATIONS 

The f i r s t  requirement  imposed upon t h e  i n s u l a t i o n  i s  t h a t  i t  must with- 

s tand t h e  maximum temperature  encountered a t  any t ime. I n  most ca ses ,  

t h i s  temperature  i s  t h e  h i g h e s t  engine backwall  temperature  a t  t h e  end of 

f i r i n g ,  though w i t h  a th ick-wal l  i n t e regen  o r  film-cooled engine a 

h igher  backwall  temperature  may occur a f t e r  t h e  f i r i n g .  The i n s u l a t i o n  

c h a r a c t e r i s t i c s  have l i t t l e  i n f luence  on this  peak temperature .  The 

choice of i n s u l a t i o n  m a t e r i a l s  i s  t h e r e f o r e  d i c t a t e d  by engine ope ra t ion  

r a t h e r  t han  by s p a c e c r a f t  h e a t  load requirements .  

The two b e s t  performing i n s u l a t i o n s  developed dur ing  t h e  p re sen t  r e s e a r c h  

program, a molybdenum-silica m u l t i l a y e r  system and a tantalum-carbon 

m u l t i l a y e r  system, w i l l  be considered here .  The molybdenum-silica insu- 

l a t i o n  w i l l  be used when t h e  maximum temperature  does  n o t  exceed 2000 F, 

w h i l e  t h e  tantalum-carbon i n s u l a t i o n  must be chosen f o r  a l l  h igher  tempera- 

t u r e  a p p l i c a t i o n s .  

The thermal  p r o p e r t i e s  of t h e  i n s u l a t i o n  of i n t e r e s t  i n  the t r a n s i e n t  

h e a t  f low a n a l y s i s  a r e  the e f f e c t i v e  thermal  conduc t iv i ty ,  k and t h e  

h e a t  capac i ty  per  u n i t  volume, pC. 
were obtained exper imenta l ly  ( see  Thermal P r o p e r t i e s  s e c t i o n )  , while  the 

h e a t  c a p a c i t i e s  (Fig.  

t i e s  (Ref. 1 ). 
a n a l y s i s  a p p l i c a t i o n  a r e  reproduced i n  F ig ,  

e’  
The c o n d u c t i v i t i e s  of t h e  i n s u l a t i o n s ,  

55) were ca l cu la t ed  from weighted component proper- 

The smoothed v a l u e s  of thermal  conduc t iv i ty  used f o r  

56 f o r  convenience. 

116 R-7548 



5x1 0-' 

LL 

m' 2x10- 

10-1 

0 1000 2000 3000 4000 

TEMPERATURE, F 
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ELECTRIC ANALOG OF THf3 HEAT TRANSFEZ?, 
I N  A BURIED INSULATED ENGINE 

The Thermal Analyzer Program (TAP 11) so lves  t r a n s i e n t  h e a t  t r a n s f e r  prob- 

lems by computing temperatures  of an analog network of lumped h e a t  capac i ty  

nodes (C = VpC ) connected by conductors  K = (A/d)k where 
P 

V = volume concentrated i n  t h e  node 

0 = d e n s i t y  

C = s p e c i f i c  hea t  
P 

A = c r o s s  s e c t i o n a l  h e a t  f low a r e a  

d = d i s t a n c e  between two nodes 

k = thermal  conduc t iv i ty  

The t h e o r e t i c a l  b a s i s  f o r  analog s o l u t i o n s  of t r a n s i e n t  hea t  conduction 

problems can be found i n  Ref.  4 .  A TAP program d e s c r i p t i o n  and inpu t  

i n s t r u c t i o n s  a r e  g iven  i n  Ref.  5. 

The model of t h e  h e a t  t r a n s f e r  i n  t h e  system must comprise a s u f f i c i e n t  

number of nodes t o  y i e l d  a reasonably  accu ra t e  s o l u t i o n  wi thout  e n t a i l i n g  

an unreasonable  expendi ture  of hand and computer c a l c u l a t i o n  t i m e .  The 

time s t e p  used i n  t h e  computer c a l c u l a t i o n s  i s  determined by t h e  sma l l e s t  

c h a r a c t e r i s t i c  response t ime ( e  . 

t h e r e f o r e  impor tan t  t o  make s u r e  t h a t  t h e  model i nc ludes  no unnecessary 

fas t - response  elements.  For i n s t a n c e ,  a t h i n  engine w a l l  subjec ted  t o  

i n t e n s e  convect ive hea t ing  du r ing  f i r i n g  w i l l  hea t  r a p i d l y .  It may be 

exped i t ious  t o  r e p r e s e n t  t h e  w a l l  a s  a s t eady- s t a t e  node k e p t  a t  t h e  

equ i l ib r ium temperature  f o r  t h e  whole d u r a t i o n  of t h e  f i r i n g ,  r a t h e r  than  

t o  inc lude  t h e  s t a r t i n g  t r a n s i e n t  of t h e  engine w a l l .  The e r r o r  i n  t h e  

h e a t  f low i n  t h e  i n s u l a t i o n  due t o  t h i s  s i m p l i f i c a t i o n  was found t o  be 

n e g l i g i b l e ,  while  a very s i z e a b l e  r e d u c t i o n  i n  computer t i m e  was t h u s  

achieved.  Of course ,  such an approach assumes t h a t  t h e  engine w a l l  

equ i l ib r ium temperatures  a r e  known, e i t h e r  from experiment o r  from a more 

r i g o r o u s  a n a l y s i s  of the engine ope ra t ion  dur ing  f i r i n g .  

= VpCp/k) of any of t h e  nodes. It i s  
min 
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Four propuls ion  systems were considered.  

1. NTO-MMH - Beryl l ium Chamber (Rocketdyne's RS-14) 

Chamber pressure  125 ps i a ;  t h r u s t  300 pounds 

In t e regen  cool ing .  F i r i n g  d u r a t i o n  10, 100, and 1000 seconds 

2. NTO-MMH - Columbium Chamber 

Chamber p re s su re  100 p s i a ;  t h r u s t  500 pounds 

F i r i n g  d u r a t i o n  600 seconds 

3 .  Monopropellant Hydrazine - Haynes 25 Alloy Chamber 

Chamber p re s su re  200 ps i a ;  t h r u s t  50 pounds 

F i r i n g  du ra t ion  600 seconds 

4. OF /B H - P y r o l y t i c  Graphi te  Chamber 
2 2 6  

Chamber p re s su re  150 p s i a ;  t h r u s t  2000 pounds, L* = 20 

F i r i n g  d u r a t i o n  600 seconds 

The e l e c t r i c  analog was somewhat d i f f e r e n t  f o r  every engine ,  and each  

case w i l l  be d iscussed  i n  more d e t a i l  under the appropr i a t e  heading,  

while  only t h e  g e n e r a l  approach i s  g iven  here .  For each  engine,  the 

l i n e r  was broken i n t o  three sec t ions :  nozz le ,  chamber, and t h r o a t ;  o r  

i n t o  two sec t ions :  nozzle  and chamber, w i t h  t h e  chamber s e c t i o n  inc luding  

t h e  t h r o a t .  Three s e c t i o n s  a r e  needed f o r  interegen-cooled thick-walled 

engines .  Two s e c t i o n s  s u f f i c e  f o r  thin-walled engines .  

An example of t h e  analog network modelling t h e  h e a t  f low i s  shown i n  

Fig.  57. Nodes 1 and 2 r e p r e s e n t  t h e  engine w a l l s .  The h e a t  capac i ty  

of t h e  chamber w a l l s  and of t h e  nozz le  w a l l s  a r e  lumped i n t o  these  two 

nodes; they  a r e  connected by a conductor ( K l )  corresponding t o  a x i a l  h e a t  

conduction i n  t h e  wa l l .  If t h e  tempera tures  i n  the  l i n e r  dur ing  f i r i n g  

a r e  known, nodes 1 and 2 a r e  cons t ra ined  t o  s t a y  a t  given temperatures  

dur ing  f i r i n g  by a s s ign ing  t h e  proper  va lue  t o  the i n i t i a l  temperature  

and an exaggerated va lue  t o  t h e  h e a t  capac i ty  ( say  l o l o  t imes t h e  c o r r e c t  

VpCp). 
of h e a t  t r a n s f e r  dur ing  soakback. 

o r  i f  t he  s t a r t i n g  temperature  t r a n s i e n t  i n  the l i n e r s  occupies  a 

The c o r r e c t  va lue  of  h e a t  capac i ty  i s  resto 'red i n  t h e  c a l c u l a t i o n s  

If l i n e r  tempera tures  a r e  n o t  known, 

s 
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s i g n i f i c a n t  p o r t i o n  ( o r  the t o t a l i t y )  of the f i r i n g  pe r iod ,  h e a t  convec- 

t i o n  from combustion g a s  i s  s imulated by in t roduc ing  cons t an t  temperature  

nodes r ep resen t ing  t h e  combustion gas  (nodes 3 and 40 of F ig .  57) and 

connectors  (K3O) and (K40) r ep resen t ing  t h e  convect ive term hA. 

connectors  a r e  disconnected (mul t ip l i ed  by 10-l') du r ing  t h e  soakback 

per iod .  

The 

Whether convec t ive ly  hea ted ,  o r  maintained a t  a g iven  tempera ture ,  t h e  

engine w a l l s  l o s e  hea t  by conduction t o  t h e  i n s u l a t i o n  a t  a l l  times. 

The i n s u l a t i o n  of t h i c k n e s s  L was d iv ided  i n t o  f i v e  nodes and assumed t o  

be enclosed i n  a 0.010-inch-thick s t e e l  case.  The s t e e l  case  was assumed 

t o  be separa ted  from t h e  s p a c e c r a f t  w a l l s  by a gap and t o  lo se  h e a t  by 

r a d i a t i o n  a lone .  The nozz le  a l s o  l o s t  hea t  by r a d i a t i o n  t o  space 

(conductor K 2 ) .  

Geometr ical ly  s i m i l a r  nozz le s  of expansion r a t i o  of 40 and 80-percent 

optimum b e l l  shape,  were used w i t h  a l l  f o u r  engines .  The view f a c t o r  

from nozzle  t o  space was obtained from a s p e c i a l i z e d  computer program 

f o r  Rocketdyne's Rs-14 engine ,  and t h e  product  of t h e  nozz le  a rea  and 

the l o c a l  va lue  of t h e  view f a c t o r  was averaged over t h e  nozz le  length .  

The average va lue  of t h e  r a d i a t i o n  a rea  t imes  the  view f a c t o r  was then  

der ived  f o r  the o the r  engines  by geometr ic  s c a l i n g .  I n  most ca ses  t h e  

temperature  dependence of  t h e  e m i s s i v i t y  of t h e  nozzle  was n o t  known, 

and a cons t an t  va lue  was used.  However, a temperature-dependent emis- 

s i v i t y  was used f o r  t h e  bery l l ium engine.  

The r a d i a t i o n  from t h e  s teel-encased i n s u l a t i o n  t o  t h e  s p a c e c r a f t  w a l l s  

was ca l cu la t ed  assuming a view f a c t o r  F = r l / C l  + l /c2 - 11-1 = 0.145 

corresponding t o  s t e e l  case  and t h e  s p a c e c r a f t  w a l l  e m i s i v i t i e s  of 0.2 

and 0.5, r e s p e c t i v e l y .  The s p a c e c r a f t  w a l l  temperature  was assumed t o  

remain a t  70 F. I n  a l l  c a s e s  b u t  one (columbium engine f o r  which convec- 

t i v e  hea t ing  was s imula ted)  t h e  engine w a l l  nodes were maintained a t  con- 

s t a n t  temperature  du r ing  t h e  f i r i n g  pe r iod ,  whi le  a l l  t h e  o t h e r  tempera- 

t u r e s  increased  from an i n i t i a l  va lue  of 70 F; the  temperature  d i s t r i b u t i o n  

122 n.-7548 



J 

obtained a t  t h e  end of t h e  f i r i n g  per iod  became t h e  i n i t i a l  temperature  

d i s t r i b u t i o n  f o r  the soakback per iod .  During the soakback, the engine 

w a l l  nodes were f ree  t o  cool  by conduction t o  each  o the r  and t h e  in sc l a -  

t i o n ,  and by r a d i a t i o n ,  t o  space (a). 
node was always c a l c u l a t e d  by t h e  computer u s i n g  the va lue  of s p e c i f i c  

h e a t  C a t  the temperature  of t h e  node, while  t h e  conduc t iv i ty  of t h e  

m a t e r i a l  i n  a conductor was computed f o r  t h e  a r i t h m e t i c  mean va lue  o f  t h e  

tempera tures  of the nodes connected by the conductor.  These computations 

w e r e  made p o s s i b l e  by e n t e r i n g  t a b l e s  of t h e  thermal  proper ty  v a l u e s  v s  

temperature  i n t o  t h e  computer i npu t  d a t a .  

The s p e c i f i c  h e a t  va lue  of each  

P 

PRELIMINARY CALCULATIONS FOR THE COMPUTER INPUT 

Input  d a t a  f o r  t h e  TAP I1 program inc ludes  t h e  thermophysical  p r o p e r t i e s  

of  t h e  component m a t e r i a l s ,  (&, k and C)  and geometr ic  f a c t o r ,  v i z , ,  t h e  

volume a t t r i b u t e d  t o  each  node, t h e  a rea /d is tance  r a t i o  f o r  each conductor,  

and t h e  a r e a s  exposed t o  convect ion and/or r a d i a t i o n .  The s p e c i f i c  hea t  

v a l u e s  and t h e  thermal  c o n d u c t i v i t i e s  a r e  en te red  i n  t a b l e s  g iv ing  t h e i r  

temperature  dependence. The geometr ic  f a c t o r s  a r e  ca l cu la t ed  f r o m  engine 

dimensions.  U s e  of t h e  " a r b i t r a r y  func t ions"  s e c t i o n  of t h e  TAP I1 

program permi ts  t h e  program t o  c a l c u l a t e  t h e  capac i tances  and conductances 

from t h e  geometr ic  f a c t o r  and t h e  t abu la t ed  v a l u e s  of t h e  p r o p e r t i e s .  

Ca lcu la t ion  of t h e  volumes o f  nodes r e p r e s e n t i n g  t h e  engine h a l l  i s  

s t r a i g h t  foreword. S e v e r a l  ways of c a l c u l a t i n g  t h e  volume of t h e  nodes 

a r e  p o s s i b l e ,  For s i m p l i f i c a t i o n ,  e q u a l  volumes a r e  a t t r i b u t e d  t o  t h e  

N i n s u l a t i o n  nodes,  s o  t h a t :  

vi = ('RD 1) (L/N) ( 3 )  

where 

- 
D = mean i n s u l a t i o n  diameter  = chamber o r  nozzle  o u t e r  diameter  + L 

L = i n s u l a t i o n  th i ckness  

1 = a x i a l  l e n g t h  of chamber o r  nozzle  

R-7548 



Since  c a l c u l a t i o n s  a r e  u s u a l l y  conducted f o r  s e v e r a l  v a l u e s  of i n s u l a t i o n  

th i ckness ,  L, it i s  convenient  t o  in t roduce  V./L i n s t e a d  

i n  t h e  geometr ic  f a c t o r  s e c t i o n ,  and t a b u l a t e  & L r a t h e r  than  0 C  . 
Thus, t h e  geometr ic  f a c t o r  s e c t i o n s  of the  program i n p u t  do n o t  have t o  

be changed when L i s  v a r i e d ,  only the t a b l e s  a r e  changed. Moreover, t h i s  

arrangement pe rmi t s  compensation f o r  t h e  use  of t h e  mean d iameter  (5) 
va lue  when L i s  changed. A c o r r e c t i o n  f a c t o r  can be introduced i n t o  the 

t a b l e  of pC L i f  L/F i s  s u f f i c i e n t l y  l a r g e  t o  warran t  the use  of such a 

c o r r e c t i o n .  

of the volume 
1 

* P  , P  

P 

S i m i l a r l y ,  t h e  conductances i n  t h e  i n s u l a t i o n  a r e  en te red  a s  a geometr ic  

f a c t o r  (v%N) and a t abu la t ed  f a c t o r  (k/L), w i t h  a Correc t ion  f o r  the 

mean diameter  i n c r e a s e  in t roduced ,  when needed, i n  t h e  t abu la t ed  v a l u e s  

of (k/L). 

The s t e e l  s h e l l  volume w a s  c a l c u l a t e d  f o r  one value of L: 7r@ + 2L) x 

1 x 0.01 and i t s  v a r i a t i o n  w i t h  L was neglec ted .  The h e a t  conten t  of 

a 0.01-inch-thick s t e e l  case  i s  u s u a l l y  sma l l  compared t o  t h a t  of t h e  

i n s u l a t i o n  and i t s  temperature  inc rease  i s  r e l a t i v e l y  small ,  s o  t h a t  t h e  

approximation does n o t  in t roduce  an apprec i ab le  e r r o r .  

Convective conductances,  (K30) and (K40) of F ig .  57 , r e p r e s e n t  the h e a t  

i npu t  ( h  x A ) .  

p r e d i c t i v e  equa t ions ,  o r  from experimental  d a t a .  The convect ion a rea  i s  

ca l cu la t ed  from engine dimensions.  The conductance hA may be en tered  a s  

a g a i n  i n t o  an a p p r o p r i a t e  s e c t i o n  of t h e  TAP I1 program ( f u n c t i o n  7 s e c t i o n )  

and m u l t i p l i e d  by  a time-dependent f a c t o r  e n t e r e d  as  a t a b l e .  

i s  u n i t y  f o r  t h e  d u r a t i o n  of t h e  f i r i ng ,  and made very small, say 10 

second a f t e r  f i r i n g  ends. 

t h u s  e f f e c t i v e l y  suppressed du r ing  t h e  soaltback per iod.  

The h e a t  t r a n s f e r  c o e f f i c i e n t  h must be obtained from 

T h i s  f a c t o r  
-10 , one 

Convective h e a t  i npu t  from t h e  combustion gas is  

Rad ia t ive  h e a t  t r a n s f e r  i s  handled by the TAP program through a s p e c i f i c  

func t ion  which c a l c u l a t e s  an approximate equ iva len t  conductance between 

two nodes, i and j ,  which exchange h e a t  by r a d i a t i o n .  
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where R must be obtained by hand ca l cu la t ion :  
i , j  

0 i s  t h e  Stefan-Boltzman cons t an t  

A .  i s  t h e  r a d i a t i v e  a rea  of node i, and F t h e  view f a c t o r  from i t o  j .  
1 i , j  

The r a d i a t i o n  from t h e  s t e e l  case  t o - t h e  s p a c e c r a f t  w a l l  i s  adequate ly  

represented  by t h e  p a r a l l e l  p l a t e  formula 

-1 + - -  1 11 
AiFij = A .  1 [' f i  

j 
E 

The view f a c t o r s  from t h e  nozzle  inne r  su r face  t o  space were obtained by 

use of a computer program a s  appl ied  t o  t h e  RS-14 engine.  S ince  a l l  t h e  

engines  analyzed were assumed t o  have geomet r i ca l ly  s i m i l a r  nozz les ,  

geometric s c a l i n g  of t h e  a rea  y i e lded  t h e  A2 v a l u e s  f o r  a l l  nozz les .  

FORMAT OF DATA INPUT FOR TAP I1 

There a r e  many ways of a r ranging  the  computerized c a l c u l a t i o n s ,  and t h e  

ones adopted here  a r e  n o t  n e c e s s a r i l y  t h e  b e s t  f o r  a l l  cases .  On t h e  

b a s i s  of p rev ious  exper ience ,  a r b i t r a r y  func t ions  and t abu la t ed  p r o p e r t i e s  

f o r  a l l  capac i tances  and a l l  conductances were used.  The only  except ions  

were t h e  r a d i a t i v e  conductances,  f o r  which t h e  r a d i a t i o n  func t ion  was used.  
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The conductances and capac i tances  a r e  en tered  uniformly a s  having a va lue  

of 1 i n  t h e  f i r s t  two b locks  of t h e  program. Nodes remaining a t  a con- 

s t a n t  temperature  (space and s p a c e c r a f t  wa l l )  a r e  g iven  a nega t ive  

capac i tance .  

t h e  r a d i a t i v e  ones,  and a l l  nodes o the r  than  t h e  cons t an t  temperature  

ones,  a r e  en te red  i n  t h e  a r b i t r a r y  f u n c t i o n s  block.  The g a i n  assigned t o  

each node r e p r e s e n t s  t h e  geometr ic  f a c t o r .  

thermal  proper ty  ( p  C ,k) o r  time dependence f a c t o r  ( f o r  convect ive 

hea t ing )  i s  en te red  a s  a t a b l e ,  and i s  re ferenced  by i t s  number. The 

numbered t a b l e s  form t h e  l a s t  block of t h e  program, The program p r i n t s  

o u t ,  a t  s p e c i f i e d  time i n t e r v a l s ,  t h e  temperature  o i  any node and t h e  

va lue  of any conductance,  a s  reques ted .  The hea t  rece ived  by the space- 

c r a f t  from the  engine can be ca l cu la t ed  from t h e  va lue  o f  t h e  conductances 

r ep resen t ing  r a d i a t i o n  from t h e  s t a i n l e s s  s t e e l  i n s u l a t i o n  s h e l l  t o  t h e  

s p a c e c r a f t  w a l l ,  and t h e  s h e l l  temperatures ,  

A f t e r  t h a t  t h e  geometr ic  f a c t o r  f o r  a l l  conductances except  

The appropr i a t e  mul t ip ly ing  

P 

A s l i g h t l y  d i f f e r e n t  approach was used f o r  eve ry  engine analyzed,  i n  an 

e f f o r t  t o  adapt  t h e  procedure t o  the  problem a t  hand. 

ELQll’ES OP APPIJCATION OF ANALYTICAL MODEL 

Beryllium Engine Desc r ip t ion  

P r  ope 1 1 a n t s  : 

Thrust :  300 pounds Chamber pressure :  125 p s i a  

Dimensions: Throat  diameter :  1.354 inches  

Chamber diameter:  3.000 inches  

N 2 0 4  - M I  

Nozzle: expansion r a t i o :  40, 80-percent 

optimum b e l l  shape 

In te regen  cooled chamber w a l l s  

F i r i n g  d u r a  t i o n :  10, 100, and 1000 seconds 
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Engine o p e r a t i o n  

A complete thermal a n a l y s i s  based on experiment 1 d a t a  and u s i n  a 400- 

node network w a s  a v a i l a b l e  f o r  a 196-second f i r i n g  followed by soakback. 

A t  t h e  end of f i r i n g  t h e  l i n e r  temperatures were s t i l l  r i s i n g  r a p i d l y .  

Some of t h e  r e s u l t s  a r e  shown g r a p h i c a l l y  i n  F i g .  58, o t h e r s  were given 

i n  p r i n t o u t  form only.  During t h e  tes ts ,  t h e  engine i n s u l a t i o n  c o n s i s t e d  

of a 1/2-inch t h i c k  l a y e r  of Min-K; h e a t  p e n e t r a t i o n  i n t o  t h e  i n s u l a t i o n  

during t h e  f i r s t  100 seconds of t h e  f i r i n g  w a s  minimal. It w a s  n e g l i g i b l e  

i n  t h e  f i r s t  10 seconds; a t  t h e  end of 10 seconds t h e  engine w a l l  tempera- 

t u r e  d i d  no t  reach 600 F a t  any l o c a t i o n ,  nor d i d  it reach 250 F a t  t h e  

backwall s u r f a c e .  C l e a r l y ,  t h e  i n s u l a t i o n  requirements f o r  10-second 

f i r i n g s  a r e  t r i v i a l .  F o r  t h e  100-second f i r i n g  c y c l e ,  t h e  i n i t i a l  tempera- 

t u r e  d i s t r i b u t i o n  f o r  t h e  soakback pe r iod  w a s  taken from t h e  d e t a i l e d  

f i r i n g  a n a l y s i s ,  and t h e  f i r i n g  p o r t i o n  was n o t  included i n  t h e  in su la -  

t i o n  a n a l y s i s ,  

No experimental  d a t a  were a v a i l a b l e  f o r  a 1000-second f i r i n g  d u r a t i o n ,  

and s u b s t a n t i a l  h e a t  p e n e t r a t i o n  i n t o  t h e  i n s u l a t i o n  during t h e  l eng thy  

f i r i n g  was t o  be expected. Ex t r apo la t ion  of t h e  temperature-time curves 

from 1.96 seconds t o  1000 seconds w a s  no t  adv i sab le .  

would show higher  than  accep tab le  engine w a l l  temperatures .  The engine 

ope ra t ion ,  i . e .  mixture r a t i o  and/or i n j e c t o r  des ign ,  w i l l  have t o  be 

modified t o  permit long f i r i n g s .  Therefore ,  t o  analyze t h e  i n s u l a t i o n  

requirements f o r  t h e  long- f i r ing  engine,  it w a s  assumed t h a t  t h e  engine 

w a l l  temperatures  s t a b i l i z e d  a t  accep tab le  va lues ;  v i z :  400 F a t  t h e  

i n t e r e g e n  cooled chamber w a l l ,  2000 F a t  t h e  t h r o a t ,  and 1600 F on t h e  

nozzle.  The a l t e r n a t i v e  scheme of s imula t ing  convective h e a t i n g ,  was no t  

used because of t h e  d i f f i c u l t y  of p rope r ly  s imula t ing  in t e regen  coo l ing  

i n  a network wi th  only t h r e e  nodes r e p r e s e n t i n g  t h e  t h i c k  engine w a l l s .  

Such an e x t r a p o l a t i o n  

R-7 54 8 127 
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I n s u l a t i o n  

The molybdenum-silica m u l t i l a y e r  i n s u l a t i o n  w a s  chosen f o r  t h e  be ry l l i um 

engine; it w a s  assumed t h a t  backwall temperatures  never exceed 2000 F. 

Analog Network and Data Inpu t  

The analog network shown i n  F i g .  59 w a s  used f o r  bo th  the  100-second and 

t h e  1000-second. f i r i n g  d u r a t i o n  cyc le s .  

t h e  c a l c u l a t i o n s  began a t  t h e  end of f i r i n g  w i t h  an  i n i t i a l  temperature 

d i s t r i b u t i o n  ob ta ined  from an engine performance a n a l y s i s .  

second f i r i n g ,  t h e  c a l c u l a t i o n s  were made f o r  t h e  f i r i n g  d u r a t i o n  (case 1) 

followed by soakback (case 2 ) .  I n  case  1, t h e  weights of t h e  engine w a l l  

nodes were m u l t i p l i e d  by a f a c t o r  of l o9  t o  impose a cons t an t  temperature 

upon them. 

For t h e  100-second f i r i n g  cyc le ,  

For t h e  1000- 

This f a c t o r  w a s  removed f o r  t h e  soakback per iod.  

Several  

1. 

2. 

3. 

R-7 54 8 

f e a t u r e s  d i s t i n g u i s h  t h e  approach t aken  f o r  t h e  €6-14 engine. 

A weight a n a l y s i s  w a s  a v a i l a b l e .  The re fo re ,  weights r a t h e r  t han  

va lues  of nodes were used and C 

t a b l e s .  

(chamber, t h r o a t ,  and nozzle)  t o  t a k e  i n t o  account t h e  l o w  

chamber wall temperatures  c h a r a c t e r i s t i c  of i n t e regen  coo l ing ,  

and t h e  high h e a t  c a p a c i t y  of t h e  much h o t t e r  t h r o a t  s e c t i o n .  

(no t  C ) e n t e r e d  i n t o  t h e  
P P 

The engine w a l l s  were r e p r e s e n t e d  by t h r e e  nodes 

The thermal a n a l y s i s  of t h e  W-14 engine f o r  a 196-second f i r i n g  

included a t a b l e  of be ry l l i um e m i s s i v i t y  v s  temperature.  The 

v a r i a t i o n  w a s  q u i t e  l a r g e ,  = 0 .1  f o r  -100 F ,  E = 0.5 f o r  

2800 F. A c o r r e c t  va lue  of K4 = CT A F 

by t a b u l a t i n g  c(T 
i n g  (A F 

s e c t i o n .  

(T + 4 6 0 ) ~  is  obtained 

+ 460) and en te r -  

) as t h e  geometric f a c t o r  i n  t h e  a r b i t r a r y  f u n c t i o n s  

3 3  3 
+ 460)’ versus  T = 1/2 (T 3 3 

3 374 

Axial  conduction i n  t h e  s t e e l  s h e l l  w a s  included (K8 and K 9  of 

F ig .  59). 
p e r a t u r e  g r a d i e n t s  i n  t h e  s t e e l  s h e l l  were not  l a r g e .  

This ref inement  w a s  no t  r e a l l y  needed s i n c e  t h e  tem- 
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4. For  t h e  100-second f i r i n g ,  on ly  t h e  soakback pe r iod  w a s  analyzed. 

5. Comparison of h e a t  t r a n s f e r  f o r  vary ing  i n s u l a t i o n  th i cknesses  

was n o t  made. 

f i r i n g ,  and a 1-inch th i ckness  f o r  t h e  1000-second f i r i n g  were 

chosen t o  conserve machine t i m e .  

A 3/8-inch i n s u l a t i o n  th i ckness  f o r  t h e  100-second 

- Resu l t s  of Computations ' 

Figures  60 and 61 
f l u x  from engine t o  s p a c e c r a f t  f o r  t h e  two f i r i n g  du ra t ions ,  Temperature 

d i s t r i b u t i o n  p r o f i l e s  i n  t h e  nozz le  i n s u l a t i o n  a t  va r ious  soakback t imes 

a r e  given i n  F i g .  62 and 63. Rad ia t ion  t o  space from t h e  nozz le  sur face  

i s  small compared t o  t h e  amount of hea t  s t o r e d  i n  t h e  t h i c k  be ry l l i um 

engine walls. A long t i m e  i s  r e q u i r e d  f o r  coo l ing ;  hence t h e  computations 

m u s t  be  run  f o r  a long t ime. Therefore  t h e  soakback w a s  no* extended t o  

t h e  t ime when h e a t  f l u x  o r  t o t a l  h e a t  load  maximums occurred.  

show t h e  temperatures  of t h e  s t e e l  s h e l l  and t h e  h e a t  

Columbium Engine Desc r ip t ion  

Propel  l a n t s  : N204 - MM€I 

Thrus t :  500 l b f ;  Chamber p re s su re :  100 p s i a  

F i r i n g  du ra t ion :  600 seconds 

In t h e  absence of a developed engine des ign ,  i t  w a s  decided t o  ana lyze  

an  engine des ign  geomet r i ca l ly  s i m i l a r  t o  t h e  RS-14 engine,  s c a l e d  t o  

produce 500 lb f  t h r u s t  a t  100 p s i a  i n s t e a d  o f  300 l b  

The s c a l i n g  f a c t o r  found by p ro ra t ing  the  t h r o a t  area t o  account  f o r  t h e  

lower chamber p re s su re  and t h e  h igher  t h r u s t  w a s  1.5. The engine dimen- 

s i o n s  thus  obta ined  were: 

t h r u s t  a t  125 p s i a .  f 

Throa t  diameter :  2 inches  

Chamber d iameter :  h.5 inches  

Nozzle expnns ion  r a t  i o  : 40 ; 80 pe rcen t  optimum be 11 shape 

R-7 5rk 8 



130 
a 

-I 
W 
W 

5; 

70 

0 

LlUM ENGINE 
MOLYBDENUM-SILICA 

L = 0.375 INCH 0 

0 

0 

0 1000 2000 3000 4000 5000 6000 

TIME AFTER FIRING, SECONDS 

,004 

L 
d 
0 

W 
u 

.002 2 
v) 

0 
I- 
x 
3 

l.001 ii 
I- 

I 
Q, 

Figure 60.  S t e e l  S h e l l  Temperature and Heat Flux t o  Spacecraf t  
Soakback (RS-14 Engine, 100-Second F i r i n g )  
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Engine Operat ion 

Columbium i s  l i m i t e d  t o  o p e r a t i o n  below 3000 F by c reep  s t r e s s e s  i n  t h e  

nozzle.  Thin w a l l s  can b e  used i f  t h e  creep-l imited temperature i s  no t  

exceeded, s i n c e  columbium i s  a h igh - s t r eng th  m a t e r i a l .  

An average w a l l  t h i ckness  of 0.4 inch  f o r  t h e  combustion chamber and 

t h r o a t  s e c t i o n ,  and 0.15 inch f o r  t h e  nozzle  a r e  accep tab le  r e a l i s t i c  

values .  Fi lm coo l ing  of chamber w a l l s  w a s  assumed t o  ma in ta in  t h e  chamber 
wall temperature  at  400 F dur ing  f i r i n g ,  while  t h e  nozzle  w a s  a t  3000 F, 

Ins u l  a t i on 

The tantalum-carbon i n s u l a t i o n  can wi ths t and  3000 F and w a s  t h e r e f o r e  

chosen. 

Analog Network and Data Input  

The analog network i s  shown i n  F i g .  64.  
lumped hea t  c a p a c i t y  of t h e  chamber and t h r o a t  w a l l s ,  and of t h e  nozzle ,  

r e s p e c t i v e l y .  Conductor K 1  is  t h e  a x i a l  conductance of t h e  w a l l s .  Con- 

v e c t i v e  hea t ing  during f i r i n g  i s  r ep resen ted  by t h e  cons t an t  temperature 

nodes 5 and 6 and t h e  conductors K5 and K6. Node 5 i s  he ld  a t  400 F and 

t h e  conductance K5 i s  l a r g e ,  s o  as t o  s imula t e  t h e  high h e a t  conductance 

between t h e  engine w a l l  sand t h e  f u e l  which i s  w e t t i n g  the  w a l l  i n  f i l m  

cool ing.  

t o  e f f e c t i v e l y  e l i m i n a t e  convect ive h e a t  exchange. 

Nodes 1 and 2 r e p r e s e n t  t h e  

10 A f t e r  t h e  f i r i n g ,  t h e  conductance K5  i s  d iv ided  by a f a c t o r  10 
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Figure 64 .  Analog Network for Heat Transfer i n  the 
Columbium Engine 



S i m i l a r l y ,  t h e  cons t an t  temperature of node 6 is  s e t  t o  3200 F and t h e  

convect ive conductance K 6  is  chosen s o  as t o  y i e l d  a temperature of 

3000 F i n  t h e  nozzle  du r ing  f i r i n g .  
10 

i s  d iv ided  by 10 t o  e f f e c t i v e l y  remove convect ive h e a t  t r a n s f e r .  The 

columbium e m i s s i v i t y  w a s  assumed t o  be 0.6, and t h e  r a d i a t i o n  f u n c t i o n  

allowed t o  c a l c u l a t e  K 2 .  

A f t e r  f i r i n g ,  t h e  conductance K6  

Except f o r  t h e  i n t r o d u c t i o n  of t h e  convect ive h e a t  t r a n s f e r  w i th  time- 

dependent convect ive conductances,  t h e  d a t a  inpu t  does n o t  d i f f e r  from 

t h e  RS-14 engine data. 

a t  t h e  end of f i r i n g  makes it p o s s i b l e  t o  examine f i r i n g  and soakback as 

one case.  Three cases  were examined corresponding t o  i n s u l a t i o n  th i ck -  

nesses  of  1 inch ,  1/4 inch and 1/8 inch.  

The u s e  of convect ive h e a t i n g  w i t h  a switch-off 

The s t e e l  s h e l l  h e a t  con ten t  w a s  c a l c u l a t e d  f o r  L = 1.0 and n o t  c o r r e c t e d  

€ o r  t h e  sma l l e r  va lues  of L.  Axial  conduction i n  t h e  s t e e l  s h e l l  w a s  

neglected.  

R e s u l t s  

The temperature  r i s e  i n  t h e  s t e e l  s h e l l  enclosing t h e  i n s u l a t i o n  i s  given 

i n  F i g .  65. C l e a r l y ,  a 1-inch i n s u l a t i o n  i s  too t h i c k .  The choice be- 

tween 1/4 and 1/8 inch th i ckness  m u s t  be made on t h e  b a s i s  of h e a t  f l u x  

t o  t h e  s p a c e c r a f t  (Fig. 66). 
1/8 t o  1/4 inch decreases  t h e  maximum h e a t  f l u x  by n e a r l y  an o rde r  of 

magnitude and t h e  t o t a l  h e a t  load by a f a c t o r  of approximately 3. 
Temperature v a r i a t i o n  with time and temperature p r o f i l e s  i n  t h e  nozzle  

i n s u l a t i o n  a t  d i f f e r e n t  t imes f o r  a 1/4-inch i n s u l a t i o n  th i ckness  a r e  

given i n  F ig .  

engine w a l l s  i s  no t  l a r g e ,  r a d i a t i o n  t o  space q u i c k l y  coo l s  t he  nozzle  

wal l s ,  while t h e  h e a t  s t o r e d  i n  t h e  i n s u l a t i o n  l eaks  o u t  more slowly. 

An i n c r e a s e  of i n s u l a t i o n  th i ckness  from 

67 and 68, r e s p e c t i v e l y .  S ince  the  hea t  s t o r e d  i n  t h e  t h i n  
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Figure 65. Steel Shell Temperatures f o r  the Columbium Engine 
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Mariner '69 Desc r ip t ion  

Monopropellant: hydrazine 

Catalyst: 1/8- by  1/8-inch c y l i n d r i c a l  alumina p e l l e t s  

Void f r a c t i o n :  0.335 

(Shel l  405 spontaneous catalyst)  

Thrus t :  

F i r i n g  dura t ion :  600 seconds 

50 l b f ;  Chamber p r e s s u r e  200 p s i  

Design: See drawing (Fig. 6 9 ) .  

Throat  diameter :  0.425 inch  

(The t h r o a t  diameter  could n o t  be obta ined  w i t h  p r e c i s i o n  from 

t h e  drawing. 

engine (Ref. 6 ) ) .  
It w a s  s c a l e d  from t h e  100 l b f  Rocket Research 

C a t a l y s t  bed diameter :  2.45 inches 

Catalyst bed l eng th :  2.01 inches  

Engine w a l l s :  Haynes a l l o y  25 

Engine Operat  ion 

The catalyst  bed is t h e  s i t e  of exothermic decomposition 'of t h e  hydrazine.  

The average temperature  of t h e  c a t a l y s t  bed i s  about  2000 F (Ref. 

The average gas temperature  i n  t h e  engine proper  i s  somewhat lower. A 

s t e a d y  temperature  of 2000 F f o r  t h e  c a t a l y s t  bed and of 1900 F f o r  t h e  

engine w a l l s  was assumed throughout t h e  f i r i n g  per iod .  

hea t  w i l l  r a d i a t e  from t h e  nozz le  t o  space,  and a l s o  from t h e  ca t a lys t -bed  

end p l a t e  t o  space,  The hea t  s t o r e d  i n  t h e  c a t a l y s t  p e l l e t s  c o n s t i t u t e d  

a major p o r t i o n  of t h e  t o t a l  h e a t  conta ined  i n  t h e  system a t  t h e  end of 

f i r i n g ,  Rad ia t ion  from t h e  end p l a t e  t o  space w a s  t h e r e f o r e  taken i n t o  

account even though t h e  view angle  f r o m  p l a t e  t o  space through t h e  t h r o a t  

opening and nozzle  is n o t  l a r g e .  

7 )  

A f t e r  t h e  f i r i n g ,  

R-7 8 15i 
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I n s u l a t i o n  

The molybdenum-silica i n s u l a t i o n  w a s  chosen s i n c e  t h e  engine w a l l  tempera- 

t u r e  does n o t  exceed 2000 F. 

Analog Network 

The analog network is  shown i n  F i g .  70. 
of t h e  whole c a t a l y s t  bed. Node 2 r e p r e s e n t s  t h e  h e a t  c a p a c i t y  of t h e  

Haynes a l loy  chamber w a l l s ;  node 3 t h e  h e a t  c a p a c i t y  of t h e  t h r o a t  s e c t o r  

and node 4 t h a t  of t h e  nozzle  w a l l s .  Nodes 9 through 14 c o n t a i n  the  h e a t  

c a p a c i t y  of t h e  i n s u l a t i o n  enc los ing  t h e  chamber and t h r o a t ,  while  nodes 

19 through 24 r e p r e s e n t  t h e  i n s u l a t i o n  enc los ing  t h e  nozzle .  The mean 

diameter of t h e  nozzle  i n s u l a t i o n  i s  l a r g e r  t h a n  t h e  mean diameter of t h e  

chamber and t h r o a t  i n s u l a t i o n .  Nodes 2 and 3 were n o t  combined i n t o  one 

node, as was done f o r  t h e  columbium engine,  t o  show t h a t  temperature 

v a r i a t i o n s  i n  t h e  engine w a l l s  can be taken i n t o  account w i thou t  going 

t o  t h r e e  i n s u l a t i o n  s e c t i o n s ,  as was done i n  t h e  thick-walled be ry l l i um 

engine. A s  c a t a l y s t  r a t h e r  t h a n  gas occupies t h e  combustion chamber, t h e  

fol lowing c a l c u l a t i o n s  had t o  be performed t o  o b t a i n  t h e  information 

needed f o r  t h e  d a t a  i n p u t  t o  TAP 11: 

Node 1 con ta ins  t h e  h e a t  c a p a c i t y  

The r a d i a t i v e  conductance from t h e  c a t a l y s t  and p l a t e  t o  space 

was c a l c u l a t e d  assuming c = 0.8 (a metal  mesh a t  high temperature has a 

high e m i s s i v i t y )  and us ing  t h e  view f a c t o r  f o r  two p a r a l l e l  d i s k s  separa-  

t e d  by a d i s t a n c e  h 

R-7 54 8 
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where r is  t h e  t h r o a t  rad ius  (Ref 8 ).  

4 
= . 3  x Btdsec -R  

125 
The r e s u l t a n t  conductance w a s  r a t h e r  low: R 

The equ iva len t  thermal c o n d u c t i v i t y  of  t h e  catalyst  bed dur ing  soakback 

w a s  c a l c u l a t e d  by t h e  method g iven  by J. M.  Smith (Ref. 9 ) 
l e n t  conduc t iv i ty  inc ludes  conduct ion i n s i d e  a p e l l e t ,  r a d i a t i o n  between 

p e l l e t s ,  and conduct ion through p o i n t s  of c o n t a c t  and through s t agnan t  

gas. 

t h e  thermal p r o p e r t i e s  of aluminum oxide taken  from Ref. 1 . The equiva- 

l e n t  conduc t iv i ty  w a s  found t o  be  r a t h e r  low, about  0.2 x 10 

see-F, and i t s  v a r i a t i o n s  wi th  temperature  were n o t  t aken  i n t o  account 

because it w a s  b e l i e v e d  t h a t  such a re f inement  i s  ou t  of p ropor t ion  re la-  

t i v e  t o  t h e  accuracy  of t h e  equ iva len t  conduc t iv i ty  c a l c u l a t i o n .  However, 

t h e  v a r i a t i o n s  of t h e  s p e c i f i c  h e a t  c a p a c i t y  w i t h  temperature  were taken  

i n t o  account .  

The equiva- 

The equat ions  developed i n  Appendix B of Ref. 9 were a p p l i e d  w i t h  

-4 Btu/in.- 

Resu l t s  o f  Computations 

Three i n s u l a t i o n  th i cknesses  were inves t iga t ed :  1/2, 3 / 8 ,  and 1/4 inch .  

F igu re  7 l s h o w s  t h e  temperatures  o f  t h e  s t e e l  s h e l l  enc los ing  t h e  in su la -  

t i o n  a t  t h e  chamber and nozz le ,  whi le  h e a t  f l u x  and t o t a l  hea t  i npu t  t o  

t h e  s p a c e c r a f t  a r e  given i n  F ig .  72. The tempera ture  p r o f i l e s  i n  t h e  

chamber and nozz le  i n s u l a t i o n s  f o r  a 1/2-inch-thick i n s u l a t i o n  a r e  given 

i n  F ig .  73 and 74, Rad ia t ion  from t h e  nozz le  t o  space  coo l s  t h e  nozzle  

i n s u l a t i o n  i n  a reasonable  t ime. The chamber i n s u l a t i o n ,  however, s t a y s  

h o t  f o r  a long t ime. The two pa ths  f o r  hea t  f low from chamber i n s u l a t i o n  

t h e  engine walls a r e  made of conductance,  inasmdch as t o  space have low 

t h i n ,  low-conduct 

space i s  small. 

v i t y  material, and t h e  v e w  € a c t o r  f o r  ca t a lys t -bed  t o  

Most o f  t h e  h e a t  s t o r e d  i n  t h e  system a t  t h e  end o f  f i r i n g  i s  s t o r e d  i n  

t h e  c a t a l y s t  bed. Thus, t h e  chamber i n s u l a t i o n  keeps r ece iv ing  h e a t  

from the c a t a l y s t  bed s lowly  t r a n s m i t t i n g  i t  t o  t h e  s p a c e c r a f t  long a f t e r  
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t h e  nozzle i n s u l a t i o n  has cooled by r a d i a t i o n  t o  space.  

t o  t h e  s p a c e c r a f t  could be reduced by providing a b e t t e r  h e a t  pa th  from 

t h e  c a t a l y s t  t o  t h e  nozzle ,  e.g., by us ing  t h i c k e r  o r  more conductive 

engine walls. 

The h e a t  load 

Graphite Engine Desc r ip t ion  

P r o p e l l a n t s :  OF -B H 

Chamber w a l l s :  

2 2 6  

p y r o l y t i c  g r a p h i t e  l / l0- inch t h i c k  capable  of 

ope ra t ing  a t  4500 t o  5000 F 

L* = 20 

Thrust  2000 l b f ;  Chamber p re s su re :  

F i r i n g  du ra t ion :  600 seconds 

150 p s i a  

Standoff o r  gap between engine l i n e r  and i n s u l a t i o n  pe rmi t t ed -  

- Engine Design and Operation 

No design corresponding t o  t h e  above s p e c i f i c a t i o n  w a s  a v a i l a b l e .  Engine 

dimensions were obtained by s c a l i n g  a 1500 lb f  ATJ g r a p h i t e  engine with a 

2.54 t h r o a t  diameter and L* = 19.84, burning OF -B H a t  100 p s i a .  The 

t h r o a t  diameter needed t o  o b t a i n  2000 l b  t h r u s t  a t  150 p s i a  was c a l c u l a t e d  

t o  be 2.80 inches ,  i . e . ,  a geometric s c a l i n g  f a c t o r  of 1.1, A schem,stic 

of t h e  engine i s  given i n  F i g .  75. The nozzle  c o n f i g u r a t i o n  w a s  t h e  80 

pe rcen t  optimum b e l l  shape wi th  an expansion r a t i o  of 40. The engine 

ope ra t ion  d e t a i l s  (mixture r a t i o  o r  i n j e c t o r  conf igu ra t ion )  a r e  no t  needed 

f o r  t h e  a n a l y s i s  of t h e  i n s u l a t i o n  behavior of a t h i n  wa l l ed  engine such 

as t h i s .  The assumption t h a t  t h e  g r a p h i t e  l i n e r  temperature i s  a t  4500 F 

€ o r  t h e  f i r i n g  d u r a t i o n  i s  s u f f i c i e n t  f o r  t h e  purpose of demonstrating 

i n s u l a t i o n  system design. 

2 2 6  

f 
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I n s u l a t i o n  

Tantalum-carbon i n s u l a t i o n  w a s  assumed t o  be formed i n t o  a c y l i n d e r  no t  

touching t h e  engine walls a t  any po in t .  The l o g i c  of such a design i s  

ease  of c o n s t r u c t i o n  and reduced i n s u l a t i o n  temperatures .  I t  was found, 

however, t h a t  t h e  gap d i d  no t  apprec i ab ly  reduce t h e  i n s u l a t i n g  temperature  

even when a r a d i a t i o n  s h i e l d  w a s  int roduced i n t o  t h e  gap. A r a d i a t i o n  

gap having a high-temperature,  high-emissivi ty  w a l l  ( g raph i t e )  f a c i n g  t h e  

i n s u l a t i o n  i s  no t  an e f f e c t i v e  hea t  b a r r i e r .  The i n s i d e  s u r f a c e  of  t h e  

i n s u l a t i o n  w i l l  r a p i d l y  approach t h e  chamber w a l l  temperature  because of 

t h e  high r a d i a t i v e  f l u x .  Rad ia t ion  s h i e l d s  a r e  i m p r a c t i c a l  a t  temperatures 

near 4000 F because e m i s s i v i t i e s  of a l l  metals  i n c r e a s e  w i t h  temperature.  

, 

Analog Network and Data Inpu t  

The d i s t i n g u i s h i n g  f e a t u r e s  of  t h e  analog network (Fig.  7 6 ) ,  a r e  t h e  

r a d i a t i v e  conductances K9 and Kl9 between t h e  chamber w a l l  and t h e  insu- 

l a t i o n ,  and t h e  nozzle  w a l l  and t h e  i n s u l a t i o n ,  r e s p e c t i v e l y .  To permit 

r a d i a t i o n  conductances t o  c o r r e c t l y  r e p r e s e n t  engine wa l l - to - insu la t ion  

s u r f a c e  r a d i a t i o n ,  s u r f a c e  nodes 9 and 19 were added t o  t h e  u s u a l  i n t e r n a l  

i n s u l a t i o n  nodes. 

20) w a s  evenly d iv ided  between 9 and 10 ( o r  19 and 20) .  

The h e a t  c a p a c i t y  u s u a l l y  a t t r i b u t e d  t o  node 10 ( o r  

The very high temperatures of  t h e  engine walls du r ing  f i r i n g  i n d i c a t e  

t h a t  t h i c k  i n s u l a t i o n  w i l l  be r equ i r ed ,  The mean i n s u l a t i o n  diameter 

( t h e  same f o r  t h e  nozzle  and t h e  chamber i n s u l a t i o n  s e c t i o n s )  was calcu- 

l a t e d  f o r  a 1-inch-thick i n s u l a t i o n .  The mean diameter c o r r e c t i o n  € o r  

c o n d u c t i v i t y  and h e a t  c a p a c i t y  w a s  in t roduced i n  t h e  t a b l e s  of  pC L 

and k ' L .  
P 

The r a d i a t i v e  conductance K9 and Ii19 were c a l c u l a t e d  as (Ref, 8 ) 

-1 R .  . = . A i [ < + <  A [ ~ - ~ ] ]  
1 , .I 

1 j4 
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where: 

e m i s s i v i t y  (= 0.85), E 

i n s u l a t i o n  e m i s s i v i t y  w a s  used because t h e  i n n e r  s u r f a c e  of i n s u l a t i o n  

i s  v e r y  h o t ,  d e s p i t e  t h e  r a d i a t i o n  gap) and A 

A .  = chamber w a l l  a r e a  ( o r  nozzle w a l l  a r e a ) ,  c i  = g r a p h i t e  
1 

= i n s u l a t i o n  e m i s s i v i t y  (= 0.4; A high va lue  of 
j 

= i n s u l a t i o n  a r e a .  
j 

An at tempt  was made t o  reduce t h e  hea t  flow t o  t h e  i n s u l a t i o n  by i n t r o -  

ducing a t h i n  r a d i a t i o n  s h i e l d  between t h e  engine walls and t h e  i n s u l a t i o n .  

The network w a s  modified as shown i n  F i g .  77. The r a d i a t i v e  conductances 

K 8 ,  K9 ,  K 1 8  and K l 9  were c a l c u l a t e d  by t h e  procedure used f o r  K 9  and K l g ,  
The r a d i a t i o n  s h i e l d  e iu i s s iv i ty  was s e t  a t  0.4 a f t e r  it became c l e a r  t h a t  

t h e  s h i e l d  would g e t  v e r y  hot.  

A r a d i a t i o n  s h i e l d  can be made v e r y  t h i n  (0.001 inches t h i c k )  s o  t h a t  

i t s  hea t  c a p a c i t y  i s  v e r y  s m a l l .  

i n t o  t h e  network l e a d s  t o  a ve ry  s m a l l ,  minimum t ime s t e p  i n  t h e  calcu-  

l a t i o n s ,  r e s u l t i n g  i n  excessive computer time expendi tures .  Therefore ,  

a t h i c k  s h i e l d  was a r b i t r a r i l y  used because an e r r o r  i n  t h e  response t ime 

of t h e  s h i e l d ,  which would be s m a l l  i n  any c a s e ,  would no t  s e n s i b l y  

a f f e c t  t he  o v e r a l l  response of t h e  system. 

In t roduc ing  a l o w  h e a t  c a p a c i t y  node 

One t y p i c a l  l i s t i n g  of t h e  computer program i n p u t  d a t a  f o r  1-1/2-inch-thick 

tantslum/carbon i n s u l a t i o n  cons ide r ing  soakabck f o r  10,000 seconds i s  given 

i n  Appendix D as a guide t o  programming a thermal  a n a l y z e r  computer program 

such as TAP 11. The computer output  l i s t i n g  of t h e  r e s u l t s  i s  a l s o  included. 

Resu l t s  of Computation 

The temperatures of t h e  s t e e l  s h e l l  enc los ing  t h e  i n s u l a t i o n  a r e  shown 

i n  Fig.  78. 
s i n c e  temperatures o f  n e a r l y  1100 F a r e  encountered. 

3 inches of i n s u l a t i o n  i s  excessive f o r  m o s t  a p p l i c a t i o n s .  

and t o t a l  hea t  r ece ived  by t h e  s p a c e c r a f t  from t h e  engine wi th  1, 1-1/2, 

and 2 inches of i n s u l a t i o n  a r e  given i n  Fig.  79 f o r  5000 seconds a f t e r  

f i r i n g  starts.  

An i n s u l a t i o n  th i ckness  of 1 inch  i s  c l e a r l y  i n s u f f i c i e n t ,  

On t h e  o the r  hand, 

Heat f l u x  

For t h e  1-inch i n s u l a t i o n ,  t h e  hea t  f l u x  r eaches  a 
i 
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maximum a f t e r  about 3000 seconds; f o r  t h e  t h i c k e r  i n s u l a t i o n s  t h e  h e a t  

f l u x  w a s  s t i l l  i n c r e a s i n g  a t  5000 seconds. The c a l c u l a t i o n s  were r epea ted  

and extended t o  10,000 seconds and 18,000 seconds f o r  L = 1.5 and 2.0 

inches r e s p e c t i v e l y ,  t o  a t t a i n  maximum hea t  f l u x  i n  each case  (Fig., 80). 

The maximum hea t  f l u x  is  2.72 Btu/sec 

f o r  L = 1.5 inches ,  and 0.42 Btu/sec f o r  L = 2.0 inches.  

shows t h e  t e a p e r a t u r e  d i s t r i b u t i o n  i n  the  chamber i n s u l a t i o n  wi th  and 

without  a r a d i a t i o n  s h i e l d .  A t  t h e  end of f i r i n g ,  the s u r f a c e  temperature 

of t h e  i n s u l a t i o n  is  on ly  50 F lower than  wi thou t  t h e  s h i e l d .  Temperature 

d i s t r i b u t i o n s  i n  t h e  1.5-inch i n s u l a t i o n  a r e  shown i n  F i g ,  82 and 83. 

€ o r  L = 1 .0  inch;  0.76 Btu/sec 

F igu re  81 

The nozzle  i n s u l a t i o n  c o o l s  f a s t e r  t h a n  t h e  chamber i n s u l a t i o n ,  t h e  

r a d i a t i o n  of t h e  nozzle  wall t o  space having a d i r e c t  path.  The h e a t  

from t h e  chamber s e c t i o n  m l i s t  f i r s t  r a d i a t e  t o  t h e  engine chamber w a l l ,  

be  conducted t o  t h e  nozzle  w a l l ,  and then  r a d i a t e d  t o  space. Rad ia t ion ,  

which w a s  q u i t e  e f f e c t i v e  i n  conducting h e a t  from t h e  high-temperature 

w a l l  t o  t h e  i n s u l a t i o n  during f i r i n g ,  became ve ry  i n e f f e c t i v e  when h e a t  

w a s  t o  be r e j e c t e d  from t h e  i n s u l a t i o n  t o  t h e  engine w a l l .  The reason 

i s ,  of  course,  t h e  r e l a t i v e l y  low temperatures of t h e  i n s u l a t i o n  du r ing  

soakback. Therefore ,  t h e  stand-off gap concept of i n s u l a t i o n  design,  

i s  n o t  e f f e c t i v e  as a h e a t  b a r r i e r .  Moreover, i t  r e s u l t s  i n  an i n c r e a s e  

of i n s u l a t i o n  weight because of t h e  i n c r e a s e  of i n s u l a t i o n  mean diameter.  

I n s u l a t i o n  wrapped d i r e c t l y  on t h e  g r a p h i t e  l i n e r  would weigh l e s s  f o r  a 

given maximum hea t  load on t h e  s p a c e c r a f t .  
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NOMENCLATURE 

- 
C 

A 

C 

e 

F 

k 

P 

e 

K l o s s  

L 

qC 

g l o s s  

q(%0) 

R 

T 

2A 

A R  

A T  

A Y  

l o s s  

E 

0 

w/o 

SUBSCRIPTS 

2 
average conduction a r e a  (f t  ) f o r  h e a t  flow 

s p e c i f i c  hea t  (Btu/lb F) 

s p e c i f i c  weight (lb/f t 3 ) 

view f a c t o r  

e f f e c t i v e  thermal c o n d u c t i v i t y  (Btu/lb f t F) 

thermal c o n d u c t i v i t y  (Btu/lb f t  F) i n  hea t  l o s s  d i r e c t i o n  

ca lo r ime te r  a x i a l  l e n g t h  ( f e e t )  

h e a t  flow r a t e  (Btu/hr) 

hea t  l o s s  r a t e  (Btu/hr)’  

co lo r ime te r  hea t  load (Btu/hr) a t  a g iven  -time 

Radial  l o c a t i o n  ( f e e t )  

temperature  (F) 

a x i a l  conduction a r e a  ( f t 2 )  

r a d i a l  conduction l eng th  ( r e e t )  between thermocouple 

temperature  d i f f e r e n c e  (F) between thermocouple s t a t i o n s  

a x i a l  d i s t a n c e  ( f e e t )  between thermocouples measuring h e a t  l o s s  

e m i s s i v i t y  

t i m e  (hours) 

weight percent  

s t a t i o n s  

i = indexing parameter denoting thermocouple p o s i t i o n  

N = Number of r a d i a l  thermocouple l o c a t i o n s  

e = e f f e c t i v e  
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APPENDIX A 

SEIZCTION OF A SILICA FABRIC 

I 

The purpose of t h e  screening  t e s t s  was t o  eva lua te  improved s i l i c a  insu la-  

t i v e  s e p a r a t o r s  f o r  t h e  mult i - layer  system t h a t  would not  have t h e  sho r t -  

comings of papers.  High-purity s i l i c a  f a b r i c s  showed t h e  m o s t  promise as 

a s u b s t i t u t e  f o r  t h e  high-puri ty  s i l i c a  papers.  Advantages of t h e s e  

f a b r i c s  a r e  t h a t  they:  

a r e  s t ronge r  t h a n  t h e  papers ,  (3 )  do not  con ta in ,  o r  need, a b inder  t o  

achieve t h i s  s t r e n g t h ,  (4) a r e  economical, and (5) a r e  a v a i l a b l e  i n  a 

v a r i e t y  o f  weaves and th i cknesses  (Fig. A-1 and A-2). 

(1) a r e  more t h a n  99 weight percent  s i l i c a ,  (2) 

The cha rac t e r  o f - t h e  s i l i c a  f i b e r s  i n  these  f a b r i c s  i s  d i f f e r e n t  from 

those  i n  t h e  papers because t h e  f i b e r s  a r e  made by d i f f e r e n t  processes .  

These processes  a r e  p r o p r i e t a r y  wi th  t h e  vendors,  and t h e i r  exac t  na tu re  

is  unlmown. However, t h e  fol lowing b a s i c  s t e p s  a r e  probably followed. 

A commercial s i l i c a t e  g l a s s  i s  drawn i n t o  appropr i a t e  f i b e r s  and a l l  of 

t h e  c o n s t i t u e n t s  except  s i l i c a  a r e  chemical ly  leached out. The f i b e r s  

a re  annealed t o  reduce t h e  excessive p o r o s i t y  and t o  reduce shr inkage 

when rehea ted  ( " san fo r i a ing" ) .  Although much of o r i g i n a l  p o r o s i t y  i s  

e l imina ted ,  t h e  f i b e r s  s t i l l  remain h igh ly  porous. Because of t h e  high 

su r face  o f  t h e s e  porous f i b e r s ,  t h e y  can absorb l a rge  q u a n t i t i e s  of gases.  

These f i b e r s  a r e  r epor t ed  by t h e  vendor t o  adsorb as much as 50 weight 

percent  of gases  under c e r t a i n  condi t ions .  However, s p e c i a l  ca re  can be 

used t o  reduce t h e  adsorbed gas conten t  of t h i s  ma te r i a l .  Fabr ics  t h a t  

a r e  packaged immediately a f t e r  manufacture can be s t o r e d  i n d e f i n i t e l y  

without adsorbing l a r g e  amounts (over 3 weight pe rcen t )  of gas. 

when t h e s e  f a b r i c s  a r e  r o l l e d  t i g h t l y  i n t o  t h e  m u l t i l a y e r  i n s u l a t i o n  con- 

f i g u r a t i o n s ,  only t h e  edges a r e  exposed t o  ambient gases.  Under ord inary  

cond i t ions ,  adso rp t ion  of gas  on t h e  f i b e r s  l oca t ed  i n s i d e  t h c  i n s u l a t i o n  

system should be ve ry  s low due t o  t h e  s h o r t  mean f r e e  p a t h  o f  t h e  gas 

passing through t h e  bundles o f  woven f i b e r s .  Even i f  a small amount 

A l s o ,  
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5AG13-10/4/67-C1B 

Figure A-1. R e f r a s i l  Paper and Fabr i c s  



R-7 54 8 

5AG13-10/4/67-ClA 

Figure A-2. A s t r o s i l  Fabrics 



of gas is adsorbed on t h e  f i b e r s ,  t h i s  adsorbed gas i s  no t  n e c e s s a r i l y  

detr imental  t o  thermal conductance p r o p e r t i e s  of t h e  composite. The 

gas w i l l  be removed r a p i d l y  a t  l o w  temperatures  by t h e  p re s su re  d i f f e r -  

e n t i a l  caused by exposure t o  a high vacuum, and, mos t  important ly ,  be- 

cause i t  i s  no t  an organic  compound, it w i l l  n o t  condense i n  coo le r  

regions of t h e  i n s u l a t i o n  system. 

The t e s t i n g  procedure of previous sc reen ing  t e s t s *  and of t h e  thermal 

s t a b i l i t y  t e s t s  was used t o  e v a l u a t e  a v a r i e t y  of s e l e c t e d  s i l i c a  fab- 

r i c s .  The f a b r i c s  were c a r e f u l l y  c u t  i n t o  1-inch squa res  us ing  a r a z o r  

blade,  (Cu t t ing  s m a l l  p i eces  of woven f a b r i c s  with s c i s s o r s  r e s u l t s  i n  

uneven c u t s  due t o  t he  " s t r e t c h a b i l i t y "  of t h e  weave when t h e  f a b r i c  is  

c u t  i n t o  small  s i z e s , )  

f o r  t h i c k n c s s ,  t hen  sandwiched between 2-mil- thick molybdenum f o i l s .  Each 

sLack ,  o r  sandwich, was weighted with a load of 1/2 pound of t ungs t en  

(lP2-psi loading 1,ressure) .  

10 t o r r  a t  2000 F f o r  1 hour. A f t e r  coo l ing ,  a l l  measurements were 

These 1-inch squares  were weighed and measured 

Specimens were then  annea l e d  i n  a vacuum of - 
--3 

rc i )eat<>d.  

RICSULT5 A N D  DISCUSS 1 ON 

l lcsu l t s  o f  s c reen ing  t e s t s  a r c  l i s t c d  i n  Table A - 1 ,  As expected,  t h e  

s i l i c a  f a b r i c s  ai)pear t o  be s u p e r i o r  t o  s i l i c a  papers. 

The s t r e n g t h  of the f a b r i c  appeared t o  be una f fec t ed  by annea l ing  a t  

2000 P. The f a b r i c  w a s  s t i l l  many t imes s t r o n g e r  t h a n  t h e  paper. Vendor 

l i t e r a t u r e  r c p o r t s  t h a t  t h e  s t r e n g t h  of R e f r a s i l  (trademark of €1. I. 

Thompson Co.) f a b r i c  i s  50 lb/ in . ,  whcrcas t h e  s t r e n g t h  o f  a paper of 

equ iva len t  t h i c k n e s s  (about 26 m i l s )  w a s  c:;timatcd a t  l e s s  t h a n  1 lb / in ,  

*IL-7l2l , Spacec ra f t  Rocliet Engine Cliarnber I n s u l a t i o n  Mate r i a l s ,  
-2. L. IIuebncr, 1,. i;. Carlson,  ant1 11. W. Carpenter ,  Rocketdyne, 
a D iv i s ion  o f  North i h c r i c a n  Av ia t ion ,  I n c , ,  Canoga Park,  
C a l i f o r n i a ,  Contract  ':Nls7-J17'1, J u l y  1967. 
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Weight l o s s  o f  t h e  f a b r i c s  v a r i e d  from 1 t o  12 pe rcen t  a s  compared t o  12 

percent  f o r  t h e  c o n t r o l  specimen of s i l i c a  paper .  A s  s t a t e d ,  t h i s  weight  

l o s s  i s  due t o  adsorbed gases  r a t h e r  than  t h e  pyro lyza t ion  of organic  

b inde r s .  Therefore ,  weight l o s s  can be reduced by q u a l i t y  c o n t r o l  of t h e  

f a b r i c ,  and t h e  vapor should  n o t  a f f e c t  thermal  conductance p r o p e r t i e s  

because i t  w i l l  n o t  condense i n  coo le r  r eg ions .  

Linear  shr inkage  p a r a l l e l  t o  t h e  meta l  f o i l s  v a r i e d  from 0 t o  6 pe rcen t ,  

a s  compareu t o  t h e  4 percent  shr inkage  of t h e  c o n t r o l  paper specimen. A 

6-percent shr inkage  could r e s u l t  i n  t e a r i n g  i n  l a r g e  specimens because i t  

occurred i n  t h e  t h i n n e s t  and ,  hence,  t h e  weakest f a b r i c .  However, i n  t h e  

case  of a l l  o t h e r  f a b r i c s ,  a nominal 3 percent  shr inkage  i n  a m a t e r i a l  

t h a t  is  m o r e  than  50 t i m e s  s t r o n g e r  than  t h e  paper should n o t  cause 

t e a r i n g .  

Shrinkage perpendicular  t o  t h e  metal  f o i l  ( i n  t h e  d i r e c t i o n  of f a b r i c  

t h i ckness )  v a r i e d  from 0 t o  9 percent  wi th  one except ion .  

woven f a b r i c  shrank 25 percen t ,  bu t  t h i s  was m o s t  l i k e l y  t h e  r e s u l t  of 

t h e  s h i f t i n g  of f i b e r s  due t o  t h e  loose weave r a t h e r  than  s i n t e r i n g  of 

t h e  f i b e r s .  Even a shr inkage of  9 percent  i s  smal l  compared t o  t h e  paper 

c o n t r o l  specimen t h a t  shrank 30 percent .  Although compress ib i l i t y  of t h e  

f a b r i c s  a t  room temperature  was n o t  measured i n  t h e s e  t e s t s ,  it appeared 

t o  be cons iderably  l e s s  f o r  t h e  candida te  f a b r i c s  than  f o r  t h e  r e fe rence  

pa pe r .  

A l oose ly  

The d e n s i t y  of s i l i c a  f a b r i c s  and papers i s  appa ren t ly  s i m i l a r .  Exact 

comparison of  a parent  d e n s i t y  va lue  was n o t  made, b u t  an  approximate 

c a l c u l a t i o n  of appa ren t  d e n s i t y  w a s  made us ing  vendor da ta  and e s t ima ted  

th i ckness  va lues .  S u r p r i s i n g l y ,  t h e  c a l c u l a t e d  d e n s i t y  of t he  f a b r i c  was 

less than t h a t  of t h e  paper ,  3 l b / f t  !Iowever, t h e s e  

d e n s i t i e s  a re  a r b i t r a r y  and. l o w ,  and such a small  d i f f e r e n c p  I S  unimportant 

compared t o  o t h e r  p r o p e r t i e s .  

3 3 cornpared t o  8 l b / f t  . 
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Wool Materia 1s 

Another i n s u l a t i v e  mater ia  1 was eva lua ted  i n  t h e s e  sc reen ing  t e s t s .  

m a t e r i a l  was Kaowool (Babcock and Wilcox Co . ) ,  an aluminum s i l i c a t e  f i b r o u s  

w o o l ,  o r  b a t t i n g  product ,  t h a t  i s  r epor t ed  t o  be u s e f u l  i n  s e r v i c e  t o  tem- 

pe ra tu res  above 2000 F. The p a r t i c u l a r  m a t e r i a l  t e s t e d  had a th i ckness  of 

15 m i l s  and was of two types ;  with and without  a b inde r .  R e s u l t s  of  tes ts  

This  

showed t h a t  t h e  b a t t i n g  l o s t  10 and 6 weight pe rcen t ,  r e s p e c t i v e l y ,  f o r  

t h e  m a t e r i a l s  with and wi thou t  a b inde r .  Linear shr inkage p a r a l l e l  t o  t h e  

metal  f o i l s  was 3 pe rcen t  and shr inkage perpendicular  t o  t h e  f o i l s  was 

6 and 23 pe rcen t ,  r e s p e c t i v e l y .  

eva lua t ion  because o f  t h e  high shr inkage o f  t h e  m a t e r i a l  without  a b inde r .  

The m a t e r i a l  w i th  t h e  b inde r  would o f f e r  no s i g n i f i c a n t  advantage over t h e  

s i l i c a  paper previously used i n  t h i s  program. 

This m a t e r i a l  was n o t  s e l e c t e d  f o r  f u r t h e r  

CONCLUSION 

Based on t h e  r e s u l t s  o f  t h e  above sc reen ing  t e s t s ,  s i l i c a  f a 5 r i c  was s e l e c -  

t e d  f o r  eva lua t ion  i n  silica/molybdenum m u l t i l a y e r  i n s u l a t i o n  systems. The 

f i n a l  s e l e c t i o n ,  H. I .  Thompson Co. Type C-100-48 c l o t h ,  was based on such 

items a s  weave and t h i c k n e s s ,  c o s t ,  and a v a i l a b i l i t y .  
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APPENDIX B 

SELECTION OF A MATERIALS SYSTEM FOR 

DETAILED INVESTIGATION 

An a d d i t i o n a l  i n s u l a t i o n  m a t e r i a l s  system was s e l e c t e d  f o r  d e t a i l e d  eval-  

ua t ion  du r ing  t h e  second yea r  of t h i s  program. Thermal conduc t iv i ty ,  

s t a b i l i t y ,  and c o m p a t i b i l i t y  of t h i s  m a t e r i a l s  system were determined under 

s imulated r o c k e t  engine environmental  cond i t ions .  Requirements of t h e  new 

m a t e r i a l s  system included those  of e x i s t i n g  systems, i . e . ,  have a l o w  e f f e c -  

t i v e  thermal c o n d u c t i v i t y ,  be chemically and p h y s i c a l l y  s t a b l e  f o r  a t  l e a s t  

1 hour  a t  3500 F a t  a p re s su re  o f  t o r r  o r  l e s s ,  be a v a i l a b l e  i n  t h e  

d e s i r e d  form because m a t e r i a l  development and f a b r i c a t i o n  were beyond t h e  

scope of t h e  e f f o r t ,  and be l i g h t  weight and inexpensive.  I t  w a s  a l s o  

d e s i r a b l e  t h a t  it possessed advantages compared t o  systems a l r e a d y  

i n v e s t i g a t e d .  

Any e f f e c t i v e  high-temperature i n s u l a t i o n  system must c o n t a i n  means of 

d i s p e r s i n g  and back-ref l e c t i n g  r a d i a t i o n .  R e f l e c t i v e  s u r f a c e s  w i t h i n  the  

matr ix  a r e  necessa ry  t o  reduce h e a t  conduction by r a d i a t i o n  because t h e  

r a d i a t i o n  h e a t  t r a n s f e r  mode i s  dominant a t  t h e  higher  temperatures ,  

p a r t i c u l a r l y  above 2000 F. 

There a r e  e s s e n t i a l l y  t w o  ways of forming a system w i t h  a high proport ion 

of r e f l e c t i v e  s u r f a c e s .  One i s  t o  use mult i - layer  systems l i k e  those used 

i n  t h i s  program, e .g . ,  a l t e r n a t i n g  t h i n  l a y e r s  of carbon f a b r i c  and tantalum 

f o i l ,  and of s i l i c a  f a b r i c  and molybdenum f o i l .  However, t h e  composition 

of t h e  s o l i d  m a t e r i a l  i s  r e l a t i v e l y  unimportant with r e s p e c t  t o  thermal 

conduc t iv i ty  (Ref. B-1) 

based on mult i - layers  of a new ceramic m a t e r i a l  and r e f r a c t o r y  me ta l  f o i l  

would n o t  have c o n s t i t u t e d  a s i g n i f i c a n t  improvement i n  thermal p r o t e c t i o n .  

The major p o t e n t i a l  improvements can come from b e t t e r  system design (e .g . ,  

t h i cknesses  of l a y e r s ,  number of t o t a l  l a y e r s ,  and physccal n a t u r e  of t h e  

m a t e r i a l s ,  such a s  f a b r i c  weave of t h e  ceramic o r  degree of p o l i s h  of t h e  

f o i l ) ,  and t h e  use of more chemically and p h y s i c a l l y  s t a b l e  m a t e r i a l s .  

Therefore ,  s e l e c t i n g  new i n s u l a t i v e  systems 
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Changes i n  system design of m u l t i l a y e r  m a t e r i a l s  systems have been s t u d i e d  

i n  t h i s  program, and t h e s e  systems a r e  made of t h e  most s t a b l e  m a t e r i a l s  

ava i l a  b l e  . 

Another way of forming a system with a high p ropor t ion  of r e f l e c t i v e  sur-  

€aces  i s  suspension of r e f l e c t i v e  p a r t i c l e s  i n  a s t a b l e  m a t r i x ,  Because 

s u i t a b l e  m a t e r i a l s  systems were n o t  a v a i l a b l e  commercially, t h e s e  m a t e r i a l s  

systems had t o  be developed and f a b r i c a t e d  f o r  t h i s  program. However, be- 

cause development of  a new m a t e r i a l s  composite was beyond t h e  scope of t h e  

pro;{rnm, a way had t o  be found f o r  t e s t i n g  t h i s  type of i n s u l a t i v e  m a t e r i a l  

system without  r e q u i r i n g  a m a t e r i a l s  developmental program. 

Refractory metal  powder was mixed with t h e  r e f r a c t o r y  ceramic p a r t i c l e s  

(::rains, f i b e r s ,  o r  hollow microspheres)  t h a t  formed t h e  low-density m a t r i x  

of  t h c  composite. 

t h e  a p p r o p r i a t e  shape f o r  determining thermal c o n d u c t i v i t y  and d i f f u s i v i t y .  

The ma t r ix  possessed a l o w  e f f e c t i v e  therma 1 conduc t iv i ty  compared t o  pre- 

v ious  i n s u l a t i n g  m a t e r i a l s  because o f  t h e  inc reased  p a t h  l e n g t h  f o r  s o l i d  

thermal  conduction. It w a s  composed of small p a r t i c l e s  s o  t h a t  s o l i d  con- 

duct ion must t a k e  p l ace  a c r o s s  c o n t a c t  p o i n t s  between p a r t i c l e s .  Contact 

p o i n t s  r e p r e s e n t  a s m n l l  p o r t i o n  o f  t o t a l  s u r f a c e  a r e a  o f  t h e  composite. 

Thu::, by I t s e l f  , tlic l oose ly  packed ma t r ix  w a s  ai? improvement over t h e  

Tyl)cb 1V ma te r i a l  t e s t e d  p rev ious ly  (Ref. B-I ) .  

c cmcn t i t i ous ly  bonded z i r c o n i a  powder i n  which t h e r e  was l i t t l e  c o n t a c t  

r e s  i s  tancc between x i  rconia p a  i n s .  

The composite was housed i n  a molybdenum con ta ine r  of  

T h e  Type I V  lnaterial w a s  

Other mc3tliods of suspcntling o r  forming r e f l e c t i v e  s u r f a c e s  i n  a r e f r a c t o r y  

I o w l  e 1- ma t 1' i x a r e  va 11 o r  d c po s i t i on , pr e c i p i  t a t i 'on , o r  de c om po s i ti on 

m o s t  !)i-omiaing method would be t o  c o a t  t h e  p a r t i c l e s  i n  a way s i m i l a r  t o  

t l i a t  u ~ c d  t o  a1)1)1y decora t ive  f i  I m s  on ceramic p o t t e r y  and dinnerware. 

Tlic metal p h a s c ,  a r c f r a r t o r y  o r  precious meta l ,  would be d i s s o l v e d  i n  an  

a l ) ~ ) r o l ) i * i a t c  organic  l i q u i d .  T h e  s o l u t i o n  would then  be mixed with t h e  

ccrainic p a r t i c l e s  and t h e  excess  s o l u t i o n  would be poured o f f  f o r  r euse .  

The f i l m  t h a t  would  remain 011 each p a r t i c l e  would be converted t o  t h e  

The 
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pure metal  phase by thermal  t r ea tmen t .  Use of r e f r a c t o r y  meta ls  would 

r e q u i r e  a second h e a t  t r ea tmen t  i n  hydrogen t o  reduce t h e  oxide i n  t h e  

meta l  phase. Thickness would be ve ry  small s o  t h a t  r e l a t i v e l y  l i t t l e  

mater ia  1 would be r e q u i r e d .  

Another method would be t o  suspend a r e f r a c t o r y  metal powder i n  a phenol ic  

r e s i n  t h a t  could  be molded o r  ex t ruded  i n t o  v a r i o u s  shapes.  The phenol ic  

would be pyrolyzed t o  form a s t r o n g ,  y e t  porous, s t r u c t u r e ,  Or, f o r  ex- 

ample, an  organic-based p a i n t  con ta in ing  suspended r e f r a c t o r y  o r  p rec ious  

meta l  powder could  be s u c c e s s i v e l y  a p p l i e d  as d i s c r e t e  l a y e r s  on a fugi -  

t i v e  mandrel.  More meta l  powder could be a t t a c h e d  on t h e  wet su r face  

a f t e r  each coa t ing .  The mul t i l aye red  composite would then  be pyrolyzed 

t o  form poor ly  bonded m u l t i l y a e r s  of a low-density carbon s t r u c t u r e  i m -  

pregnated wi th  r e f r a c t o r y  metal-oxide powder. A r educ t ion  r e a c t i o n  would 

be r e q u i r e d  provided t h a t  t h e  r e f r a c t o r y  meta l  ox id ized  dur ing  t h e  pyro- 

l yza t ion  ope ra t ions .  Although both molybdenum and tan ta lum will c a r b u r i z e ,  

t h e  r e f r a c t o r y  meta l  ca rb ide  p a r t i c l e s  would s t i l l  have a r e f l e c t a n c e  va lue  

of about  50 percent  o r  more. 

SCREENING TESTS 

Des c r i p t  i on 

The purpose of t h e  sc reen ing  t e s t s  w a s  t o  compare t h e  m e r i t s  of candida te  

m a t e r i a l s  systems with r e s p e c t  t o  ease  of p repa ra t ion ,  degree of  develop- 

mental  e f f o r t  r e q u i r e d  t o  p e r f e c t  t h e  m a t e r i a l  t o  t h e  e x t e n t  t h a t  i t  i s  

s a t i s f a c t o r y  f o r  t h i s  program, and phys ica l  and chemical s t a b i l i t y .  2 1 1 1  

m a t e r i a l s  systems were t e s t e d  a t  3500 F f o r  1 hour a t  a pressure  of  appros i -  

mately t o r r .  The candida te  systems t e s t e d  a r e  l i s t e d  i n  Table  B-1. 

B a s i c a l l y ,  t h e  systems inc lude  t h r e e  ma t r i ces :  z i r c o n i a ,  t h o r i a ,  and 

g r a p h i t e ,  and f i v e  r e f l e c t i v e  phases: t ungs t en ,  t an ta lum,  molybdenum, 

rhenium, and rhodium. R e f l e c t i v e  phases were added i n  t w o  ways. E i t h e r  

t h e  r e f l e c t i v e  powder was mixed w i t h  t h e  ceramic mat r ix  p a r t i c l e s ,  o r  a 

s o l u t i o n  of t h e  r e f l e c t i v e  metal  was mixed with t h e  ceramic mat r ix  p a r t i c l e s .  

I 

E-7 54 8 173 



s 

e 
0 
Fr 

Ln L n L n l n  Lnno 0 cv I O I C J N  I I N N O  I O  I I I I I I I I I 
M l M M M l  I M M N I N I  I I I I I 1  I I 

I I l l  I l l  I 

E:c 
@ a ,  
4 4  

a, a 
P I 

I 
I 
I 

0 l A " 4  I 1 0 0 0  I O  I I I I I 1  I 1  I 
L n l " " 4 l  I M L n M l L n l  I 1  I I I I I I 

0 Lno 
0 @I 0 
9.l M N c o c o  + ++.,-'a + +  

0 0  
0 0  
NNco + + - s  

m rn in *n m 
G E: E: G . !  
_> .-I .a .-I 

m 
a, 

18 0 R-7 54 8 



Because t h e  s o l u t i o n  w a s  an  organic  m a t e r i a l  i n  t h e  l a t t e r  ca se ,  it had 

t o  be h e a t  t r e a t e d  i n  a i r  t o  pyrolyze t h e  organic  c o n s t i t u e n t s .  However, 

because t h e  oxides ( tungs t en  oxide a t  l e a s t )  a r e  v o l a t i l e ,  pyrolyzat ion 

temperature  was k e p t  low.  Thus, some organic  m a t e r i a l  may have remained 

i n  t h e  f i l m  and, subsequent ly ,  cha r red  during t e s t i n g  i n  t h e  vacuum 

environment. Consequently, t h e  exac t  n a t u r e  o f  t h e  f i l m  be fo re  and a f t e r  

t e s t i n g  vas not  known. 

Tungsten and rhenium f i l m s  would have been i n  the form of oxides a f t e r  

h e a t i n g  i n  a i r .  When hea ted  t o  3500 F i n  vacuum t h e s e  oxides may have 

been v o l a t i z e d ,  o r  t h e y  may have been reduced t o  a me ta l  o r  a ca rb ide ,  

X-ray d i f f r a c t i o n  a n a l y s i s  was n o t  a t tempted because of t h e  ve ry  small 

th i ckness  of t h e  f i l m .  

of t e s t  r e s u l t s  and t h e  scope o f  t h e  program suggested t h a t  t h i s  method 

of p repa r ing  i n s u l a t i o n  mater ia  1s would n o t  be employed. 

Chemical a n a l y s i s  w a s  n o t  pursued when e v a l u a t i o n  

Pr oc e dur e 

Zirconia-  and Thoria-based mixtures  were prepared a s  small  ba t ches ,  j u s t  

enough f o r  a p a r t i c u l a r  t e s t .  

g l a s s  beakers .  Zirconia  and t h o r i a  composites were contained during t e s t i n g  

i n  112 by 112 by 2 inch cans t h a t  were made OP molybdenum f o i l  and open a t  

one of t h e  s m a l l  ends. Graphi te  composites were contained i n  molybdenum 

cans t h a t  were l i n e d  wi th  tantalum f o i l .  Powders were i n i t i a l l y  compacted 

by l i g h t l y  tamping t h e  can on a t a b l e  20 t imes.  

composite w a s  determined by measuring t h e  decrease i n  h e i g h t  o f  t h e  powder 

i n  t h e  c o n t a i n e r .  S t a r t i n g  h e i g h t  was 1 inch  o r  more. Annealed powders 

were observed wi th  t h e  unaided eye,  t h e  low-power s tereomicroscope,  and 

high-power microscope when necessary.  Powder composites were prepared f o r  

microscopic s tudy  by vacuun! i n f i l t r a t i n g  wi th  low-viscosity epoxy and 

s t anda rd  ceramographic p o l i s h i n g  procedures.  Bulk d e n s i t y  was determined 

by d i v i d i n g  weight by volume, which w a s  measured by pouring t h e  powder 

i n t o  a 10 cc graduated c y l i n d e r ,  

M a t e r i a l s  were mixed by g e n t l e  s t i r r i n g  i n  

Shrinkage of t h e  powder 
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Re su 1 t s  

A summary o f  r e s u l t s  i s  presented  i n  Table  B-2, Graphite-based powders 

d i d  n o t  sh r ink  apprec i ab ly ,  b u t  t hey  outgassed cons iderably  and r e a c t e d  

ex tens ive ly  wi th  t h e  tan ta lum c o n t a i n e r s ,  Conta iners  ca rbur i zed  became 

b r i t t l e  and d i s i n t e g r a t e d  except  i n  some a r e a s  where t h e  tan ta lum had 

welded t o  and w a s  supported by t h e  molybdenum backing. 

ou tgass ing  of g r a p h i t e  (or carbon)  powder was a problem. 

Containment and  

Thoria-based powders a l s o  r e a c t e d  wi th  t h e  c o n t a i n e r s ,  b u t  i n  t h i s  ca se  

t h e  con ta ine r s  were molybdenum. The n a t u r e  of  t h i s  r e a c t i o n  i s  n o t  c l e a r  

because tungs ten ,  t h o r i a ,  and molybdenum do n o t  r e a c t  apprec i ab ly  a t  3500 F 

(Ref. B-2). 

percent ,  which i s  n o t  accep tab le  f o r  t h i s  a p p l i c a t i o n ,  However, raw mate- 

r i a l  i n  t h e  form of coarse  fused  g r a i n s ,  which i s  commercially a v a i l a b l e  

a t  a high c o s t ,  would e l i m i n a t e  excess ive  shr inkage due t o  s i n t e r i n g .  

Fused t h o r i a  was n o t  a v a i l a b l e  f o r  t e s t i n g .  

Thoria-based powders t h a t  were t e s t e d  shrank  a s  much a s  23 

Zirconia-based mixtures  r ep resen ted  t h e  most a t t r a c t i v e  m a t e r i a l s  system 

t e s t e d .  The d a t a  a r e  summarized i n  Table  B-3. Linear  shr inkage i n  t h e  

v e r t i c a l  d i r e c t i o n  v a r i e d  between 6 and 5 pe rcen t ,  depending on p a r t i c l e  

s i z e .  One z i r c o n i a  specimen shrank 8 pe rcen t ,  bu t  t h a t  da ta  p o i n t  i s  

no t  r e a l i s t i c  compared t o  t h e  o t h e r  d a t a ;  mix tures  of even f i n e r  powders 

d i d  n o t  sh r ink  t h a t  much, I t  i s  poss ib l e  t h a t  t h e  high shr inkage va lue  

was due t o  some of  t h e  powder be ing  l o s t  du r ing  handl ing  r a t h e r  than  f r o m  

s i n t e r i n g .  Zirconia-based mixtures  d i d  no t  r e a c t  wi th  t h e  molybdenum 

c o n t a i n e r s .  The i n s i d e  s u r f a c e  of t h e  molybdenum was s t i l l  c l ean  and 

sh iny  a f t e r  t e s t i n g .  

free-f lowinff powders and t h e  wide s e l e c t i o n  of economically-priced i'orms 

of z i r c o n i a ,  e .g , ,  s i n t e r e d  o r  fu sed  powder and hollow microspheres .  

(Zirconia  f i b e r s  a r e  no longer  commercially a v a i l a b l e . )  

Other advantages were t h e  ease  i n  handl ing  t h e s e  

One p o t e n t i a l  problem i n  us ing  t h e s e  mixtures  i s  seg rega t ion  of  t h e  coarse  

z i r con ia  1)owder and t h e  f i n e  tungs ten  powder. This  phenomenon was n o t  
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observed, however, i n  t h e s e  s m a l l  samples. The z i r c o n i a  powder has  t o  be 

coarse  s o  t h a t  it does n o t  s i n t e r ,  whereas t h e  tungs t en  powder has  t o  be 

f i n e  t o  d i s p e r s e  r a d i a t i o n  opt imal ly .  

o f  p a r t i c l e  s i z e s .  F i n e r  z i r c o n i a  can be used i f  it i s  de r ived  f r o m  fused  

r a t h e r  t h a n  s i n t e r e d  powder. Powder de r ived  f r o m  f u s i o n  processes  s i n t e r s  

l e s s  r e a d i l y  than  e q u i v a l e n t  powder de r ived  from s i n t e r i n g  processes  under 

t h e  same cond i t ions .  

Thus, a t r a d e o f f  e x i s t s  i n  s e l e c t i o n  

Tungsten a s  a f i n e  powder w a s  t h e  b e s t  a d d i t i v e  having a r e f l e c t i v e  s u r f a c e .  

Tungsten is l e s s  r e a c t i v e  w i t h  oxides t h a n  o t h e r  me ta l s  (Ref. B-2 and B-3), 

and t h e  powder f o r m  i s  most convenient f o r  i n c o r p o r a t i o n  i n  t h e  matrix.  

Addit ion as a r e s i n a t e  r e q u i r e s  s p e c i a l  h e a t  t r e a t i n g  ope ra t ions  i n  a i r  and 

i n  hydrogen t o  conve r t  it t o  t h e  m e t a l l i c  form. The advantage of adding it 

as a r e s i n a t e  i s  t h a t  it would be i n  t h e  form of a ve ry  t h i n  f i l m .  Thus, 

t h e  appa ren t  d e n s i t y  of  t h e  mixture  would be reduced. 

d e n s i t y  was n o t  e s s e n t i a l  f o r  e v a l u a t i n g  t h i s  concept as a n  e f f e c t i v e  high- 

temperature i n s u l a t i o n  system. 

However, low appa ren t  

CONCLUSIONS 

Based on t h e  preceding r e s u l t s ,  t h e  m a t e r i a l s  system s e l e c t e d  f o r  d e t a i l e d  

t e s t i n g  c o n s i s t e d  of  2 and  10 weight percent  of f i n e  tungsten powder d i s -  

persed i n  -36, +lo0 mesh, fu sed  z i r c o n i a  p a r t i c l e s .  The mixture was housed 

i n  a s ingle-wal led molybdenum f o i l  c o n t a i n e r  f a b r i c a t e d  t o  t h e  shape of t h e  

thermal c o n d u c t i v i t y  specimens, e .g . ,  a hollow c y l i n d e r  10 o r  16 inches 

long, 6 inches  o u t s i d e  diameter  and 4 inches i n s i d e  diameter .  
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APPENDIX C 
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CURVE FITTING MOLYBDW/SILICA EFFECTIVE: T T I E ~ I ,  

CONDUCTIVITY RESULTS FOR ARGON PRESSURTZATION 

OF 1-, 400-, 800-, AND 1600 MICRONS 

The r e s u l t s  of F ig .  C-1  were curve f i t t e d  with eighth-order polynomials 

t o  wi th in  1 percent u s ing  a least-squares curve f i t t i n g  computer program 

c a l l e d  P o l y f i t  on t h e  General E l e c t r i c  time-sharing computer. The poly- 

nomial express ion  i n  temperature is of t h e  form: 

2 3 4 5 6 7 8 K = A + B T + C T  + D T  + E T  + F T  + G T  + H T  + I T  

where 

K = Btu/hr-ft F 

T = Temperature, F 

A t a b u l a t i o n  of t h e  

pressure l e v e l .  

a lphabe t i c  c o e f f i c i e n t s  is given below f o r  each argon 
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Three insulation systems were evaluated in an extensive experimental program: 
multilayers of silica fabric/molybdenum foil, carbon fabric/tantalum foil and 
fine tungsten powder dispersed in a matrix of hollow zirconia microspheres. 

At temperatures below 2000 F, molybdenum/silica is clearly the superior insulation. 
Above 2000 F, tantalum/carbon is clearly superior. The tungsten/zirconia insulation 
system has an order of magnitude higher conductivity than the other material systems 
at the low temperatures, but is only 30 percent higher at the higher temperature. 
Means of maintaining tungsten/zirconia homogeneity under vibration have to be 
provided. 

Measurements of effective thermal conductivity and thermal stability tests were con- 
ducted at temperatures up to and exceeding 3500 F. 
ducted with B-66 (a columbium alloy), Ta-IOW, Mo-1/2 Ti, and Haynes 25 vs molybdenum 
and tantalum foils, and with Haynes 25 vs silica fabric. While no compatibility 
problems were encountered at 2000 F, diffusion barriers may be required to keep the 
materials from welding at temperatures exceeding 2000 F. 

The details of all phases of work are fully discussed in a four-section report: (1) 
Selection of Materials, (2) Thermal Properties, (3)  Thermal Stability and Compatibil- 
ity, and ( 4 )  Applications Analysis. 
insulation systems for "buried" rocket chambers having arbitrary duty cycles, geomet- 
rical features, propellants and thrust. Insulation temperature profiles for each 

Compatibility studies were con- 
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